Assessing Cognitive Function in Bipolar Disorder: Challenges and Recommendations for Cognitive Trial Design Katherine E. Burdick, PhD Associate Professor of Psychiatry and Neuroscience Mount Sinai School of Medicine #### Disclosures Advisory Boards -- Dainippon Sumito Pharma; Takeda and Lundbeck Off-label data included for Mirapex© (pramipexole) Funding from NIMH; Stanley Medical Research Institute; NARSAD #### A Brief History of Neurocognition in BPD 1898: Kraepelinian's Dichotomy - • 1978: The first paper on BP and cognition Cognitive functions in manic-depressives: effects of lithium and physostigmine. R Telford and E P Worrall The British Journal of Psychiatry BJP 1978, 133:424-428. - 1998: Less than 10 papers published on BP and cognition - More than 200 published in SZ - 2008: Over 500 papers published on BP and cognition #### 2013: Nearly 2000 Papers Published #### Cognition in SZ and BPD #### Cognition-Function Relationship in SZ #### Cognition-Function Relationship in BPD ## Cognitive Dysfunction in Bipolar Disorder Future Place of Pharmacotherapy Katherine E. Burdick, 1,2,3 Raphael J. Braga, 1 Joseph F. Goldberg 4 and Anil K. Malhotra 1,2,3 CNS Drugs 2007; 21 (12): 97 1-981 1172-7047/07/0012-097 1/\$44.95/0 - Cognitive deficits are among the strongest predictors of functional disability in SZ and BPD. - These deficits do not appear to respond to standard treatment. - It is necessary to consider directly targeting them with pharmacological and non-pharmacological approaches. - Many trials underway in SZ - Very few in BPD #### Optimism: The BPD Advantages #### Course of Intellectual Functioning in SZ #### IQ Remains Intact in BPD #### Cognitive Intervention Challenges - Part I: Clinical complexity - Spectrum presentation - Course of illness - Comorbidities - Concomitant medications/polypharmacy - Part II: Cognitive heterogeneity - Part III: Measurement No consensus battery for BPD #### I) BPD Clinical/Diagnostic Challenges - Episodic course - Natural fluctuations - Mood state - Euthymia definition - Subsyndromal sxs - Subtype - BPD I/BD II - Psychosis #### Bipolar Subtype | Test | Study | BD I | BD II | D | P | |-----------------------|-------|------|-------|-------|--------| | Global cognition | 8 | 293 | 233 | 0.26 | 0.004 | | Processing speed | 6 | 246 | 187 | 0.28 | 0.005 | | Phonetic fluency | 4 | 151 | 112 | 0 | 0.99 | | Stroop interference | 3 | 129 | 83 | 0.26 | 0.10 | | TMT-A | 3 | 130 | 98 | 0.08 | 0.56 | | TMT-B | 4 | 152 | 131 | 0.25 | 0.10 | | Semantic fluency | 4 | 167 | 131 | 0.31 | 0.01 | | Visual memory | 6 | 218 | 183 | 0.38 | 0.01 | | Complex figure recall | 3 | 107 | 72 | 0.66 | <0.001 | | Verbal memory | 7 | 260 | 198 | 0.52 | <0.001 | | List learning | 5 | 216 | 150 | 0.53 | <0.001 | | List recall | 5 | 188 | 141 | 0.48 | <0.001 | | List recognition | 7 | 267 | 197 | 0.49 | <0.001 | | Attention | 3 | 159 | 87 | 0.18 | 0.22 | | Omission errors | 3 | 159 | 87 | 0.04 | 0.82 | | Commission errors | 3 | 159 | 87 | 0.32 | 0.13 | | Planning | 5 | 166 | 127 | 0.06 | 0.64 | | WCST cat | 3 | 108 | 68 | 0.00 | 0.99 | | WCST per | 3 | 108 | 68 | 0.03 | 0.86 | | Working memory | 5 | 224 | 158 | 0.12 | 0.26 | | Digits forward | 4 | 194 | 121 | -0.01 | 0.92 | | Digits backward | 3 | 129 | 83 | 0.20 | 0.16 | #### Bipolar Subtype | Test | Study | HC | BD II | D | Р | |-----------------------|-------|-----|-------|------|--------| | Global cognition | 8 | 379 | 239 | 0.43 | <0.001 | | Processing speed | 6 | 300 | 193 | 0.55 | <0.001 | | Phonetic fluency | 4 | 216 | 118 | 0.47 | <0.001 | | Symbol coding | 3 | 112 | 100 | 0.68 | <0.001 | | Stroop interference | 3 | 187 | 89 | 0.72 | <0.001 | | TMT-A | 3 | 119 | 108 | 0.49 | <0.001 | | TMT-B | 4 | 148 | 137 | 0.51 | <0.001 | | Semantic fluency | 4 | 250 | 131 | 0.46 | <0.001 | | Visual memory | 6 | 227 | 125 | 0.58 | <0.001 | | Complex figure recall | 3 | 105 | 90 | 0.76 | <0.001 | | Verbal memory | 7 | 317 | 203 | 0.32 | 0.004 | | List learning | 6 | 295 | 166 | 0.39 | 0.01 | | List recall | 6 | 295 | 166 | 0.31 | 0.06 | | List recognition | 6 | 300 | 193 | 0.22 | 0.05 | | Planning | 4 | 143 | 108 | 0.29 | 0.05 | | Working memory | 5 | 271 | 164 | 0.55 | <0.001 | | Digits forward | 3 | 221 | 102 | 0.39 | 0.06 | #### Psychosis History | Test | Study | BPD+ | BDP- | d | 95% CI | Z | p | Q-test p | Bias a | |--------------------|-------|------|------|------|--------------|------|---------|----------|--------| | Global cognition | 11 | 435 | 339 | 0.22 | 0.08-0.37 | 3.03 | 0.002 | 0.65 | 0.15 | | Global cognition b | 10 | 360 | 291 | 0.30 | 0.14-0.46 | 3.72 | < 0.001 | 0.96 | 0.70 | | Attention | 4 | 195 | 130 | 0.10 | -0.12-0.32 | 0.88 | 0.38 | 0.69 | 0.14 | | Attention b | 3 | 120 | 82 | 0.20 | -0.08 - 0.48 | 1.37 | 0.17 | 0.87 | 0.38 | | Processing speed | 7 | 278 | 230 | 0.20 | 0.02-0.37 | 2,15 | 0.03 | 0.59 | 0.91 | | Phonetic fluency | 5 | 209 | 175 | 0.16 | -0.05-0.37 | 1.53 | 0.13 | 0.88 | 0.003 | | Stroop | 4 | 168 | 133 | 0.32 | 0.05-0.60 | 2,29 | 0.02 | 0.27 | 0.77 | | TMT-A | 5 | 151 | 131 | 0.09 | -0.16 - 0.34 | 0.68 | 0.50 | 0.34 | 0.97 | | TMT-B | 5 | 151 | 131 | 0.30 | 0.06-0.55 | 2.48 | 0.01 | 0.75 | 0.43 | | Semantic fluency | 5 | 202 | 168 | 0.37 | 0.15-0.58 | 3.39 | < 0.001 | 0.76 | 0.73 | | Visual memory | 2 | 59 | 59 | 0.12 | -0.24-0.48 | 0.64 | 0.52 | 0.96 | | | Verbal memory | 6 | 227 | 192 | 0.39 | 0.18-0.59 | 3.83 | < 0.001 | 0.53 | 0.11 | | List learning | 4 | 175 | 140 | 0.45 | 0.22-0.68 | 3.83 | < 0.001 | 0.70 | 0.72 | | List recall | 5 | 209 | 175 | 0.34 | 0.13-0.54 | 3.18 | 0.001 | 0.86 | 0.86 | | List recognition | 3 | 100 | 79 | 0.28 | -0.02-0.58 | 1.85 | 0.06 | 0.92 | 0.99 | | Working memory | 7 | 222 | 204 | 0.28 | 0.08-0.47 | 2.78 | 0.006 | 0.83 | 0.86 | | Digits forwards | 4 | 105 | 104 | 0.23 | -0.05-0.50 | 1.62 | 0.10 | 0.74 | 0.40 | | Digits backwards | 5 | 145 | 135 | 0.30 | 0.08-0.52 | 2.72 | 0,006 | 0.46 | 0.92 | | Planning | 8 | 303 | 241 | 0.31 | 0.07-0.54 | 2.54 | 0,01 | 0.009 | 0.001 | | Planning b | 7 | 228 | 193 | 0.41 | 0.21-0.60 | 4.04 | < 0.001 | 0.81 | 0.13 | | WCST cat | 6 | 216 | 171 | 0.33 | -0.18 - 0.83 | 1.26 | 0,21 | <0.0001 | 0.06 | | WCST cat b | 5 | 141 | 123 | 0.55 | 0.30-0.80 | 4.33 | < 0.001 | 0.76 | 0.45 | | WCST per | 7 | 269 | 206 | 0.31 | 0.12-0.49 | 3,21 | 0.001 | 0.70 | 0.03 | | WCST per b | 6 | 194 | 158 | 0.36 | 0.15-0.57 | 3,26 | 0.001 | 0.72 | 0.09 | #### Effects of Repeated Episodes #### BPD Clinical/Diagnostic Challenges - Clinically complex with multiple common comorbidities that likely affect cognition - Substance use d/o - Anxiety d/o - ADHD - Childhood trauma - Sleep disorders #### Cognitive Side Effects: Concomitant Meds | Agent | Adverse effects | Neutral or beneficial effects | |-------------------------|---|---| | Lithium | Slowed motor speed Impaired short- and long-term memory Slowed reaction time Diminished associative fluency | No adverse effect on attention or sustained attention | | Divalproex | Mild attention impairment Mild short- and long-term memory impairment Delayed decision time Slowed motor speed Diminished cognitive flexibility | No adverse effects on visuospatial function | | Carbamazepine | Mild short- and long-term memory impairment | No adverse effects on motor speed | | Lamotrigine | None reported | No reported adverse effects of attention, memory,
motor speed | | Antidepressants | Anticholinergic effects of tricyclic agents
associated sedation, cognitive dulling | No published evidence of adverse cognitive effects
associated with SSRIs, SNRIs, MAOIs, or bupropion | | Atypical antipsychotics | Noncontrolled studies have reported poorer
executive function among bipolar patients
taking SGAs as compared to those not
taking SGAs | Potentially better cognitive function with at least
some SGAs than FGAs Improvements reported with SGAs from baseline
cognitive function in schizophrenia patients
are modest, and also may reflect disease state
differences relative to bipolar disorder | #### II) Heterogeneity in BPD #### Cognitive Heterogeneity in BPD - Acute state effects - Cognitively heterogeneous when stable - Not all patients will require intervention - Defining threshold will be critical Reichenberg et al. 2009; Bora et al. 2010 ### Empirical evidence for discrete neurocognitive subgroups in bipolar disorder: clinical implications K. E. Burdick^{1*}, M. Russo¹, S. Frangou¹, K. Mahon¹, R. J. Braga², M. Shanahan¹ and A. K. Malhotra² ² Zucker Hillside Hospital - North Shore Long Island Jewish Health System, Glen Oaks, NY, USA | | BPD (n=136) | Healthy (n=148) | Statistic (p) | |--------------|-----------------|-----------------|----------------| | Age | 40.8 (10.6) | 41.6 (15.1) | 0.26 (0.61) | | Sex | 50% female | 43.9% female | 1.10 (0.31) | | Race | 49% Caucasian | 47% Caucasian | 0.11 (0.74) | | Premorbid IQ | 97.6 (10.8) | 102.2 (11.7) | 10.70 (<0.01) | | HamD | 11.1 (8.5) | 0.5 (1.3) | 223.56 (<0.01) | | CARS-M | 5.5 (7.0) | 0.3 (0.8) | 81.56 (<0.01) | | BPD subtype | 105 BPI/31 BPII | | | | Psychosis Hx | 50.7% yes | | | ¹ Departments of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA #### Cognitive Profile of all BPD Patients #### 3 Cognitive Subgroups Exist #### Cognitively Intact Subgroup #### Selectively Impaired Subgroup #### Globally Impaired Subgroup #### Globally Impaired Subgroup #### Hands on: Lessons Learned ## Placebo-Controlled Adjunctive Trial of Pramipexole in Patients With Bipolar Disorder: Targeting Cognitive Dysfunction Katherine E. Burdick, PhD; Raphael J. Braga, MD; Charles U. Nnadi, MD; Yaniv Shaya, MA; Walter H. Stearns, MD; and Anil K. Malhotra, MD - Pramipexole (Mirapex©) acts as a partial/full agonist at D₂/D₃ strongest affinity for D_{3.} - FDA-approved for PD and RLS - Although preliminary, our data are promising and suggest that improving neurocognitive functioning in patients with bipolar illness is a feasible ambition. Future studies of pramipexole and other agents will be important in continuing efforts to enhance treatment outcome and quality of life. # Preliminary Randomized, Double-Blind, Placebo-Controlled Trial of Pramipexole Added to Mood Stabilizers for Treatment-Resistant Bipolar Depression (Am J Psychiatry 2004) - Goldberg, Burdick, Endick (2004): (n=22): 12 active, 10 placebo - 67% pram response (50% decrease in HamD) - 20% placebo response - Effect size d=0.77 - Safe and effective # Cognitive Enhancement in Bipolar Disorder (SMRI: Burdick and Malhotra): The Grant - Funded for 2 year period - 8-week randomized, double-blind, placebocontrolled trial (1.5 mg/day) - Euthymic patients (HamD & CARS-M < 8) - All-comers accepted no requirement of objective impairment for inclusion - No DA blockers ## Cognitive Enhancement in Bipolar Disorder (Burdick et al. 2011): The Study - Data collected from Aug 2005 to Mar 2010 - Euthymic patients (HamD & CARS-M < 8) - Stable not euthymic (HamD < 12) - All-comers accepted no requirement of objective impairment for inclusion - No DA blockers - No first generations #### Placebo-Controlled Adjunctive Trial of Pramipexole in Patients With Bipolar Disorder: Targeting Cognitive Dysfunction Katherine E. Burdick, PhD; Raphael J. Braga, MD; Charles U. Nnadi, MD; Yaniv Shaya, MA; Walter H. Stearns, MD; and Anil K. Malhotra, MD J Clin Psychiatry 2011;72(00):000-000 | Feature | Placebo (n=24) | Pram (n=21) | Statistic | p-value | |------------------------------------|----------------|--------------|-----------------|---------| | | | | | | | Mean Age (SD) | 44.42 (12.2) | 43.81 (9.4) | F=0.03 | 0.85 | | Sex | 10male/14f | 7male/14f | $\chi^2 = 0.33$ | 0.57 | | Race | 10white/14non | 7white/14non | $\chi^2 = 0.33$ | 0.57 | | Mean HamD Baseline (SD) | 5.5 (3.5) | 5.9 (3.4) | F=0.12 | 0.73 | | Mean CARS-M Baseline (SD) | 2.5 (2.1) | 3.1 (2.4) | F=0.92 | 0.34 | | Change in HamD (Week 8-Baseline) | -1.5 (3.2) | -0.9 (5.5) | F=0.23 | 0.63 | | Change in CARS-M (Week 8-Baseline) | -0.9 (3.0) | 0.5 (4.0) | F=1.62 | 0.21 | | Mean Premorbid IQ (WRAT) | 96.1 (13.3) | 96.5 (12.7) | F=0.01 | 0.92 | #### Effect in All Completers #### Influence of Baseline Affective Sxs #### Influence of Baseline Deficit Severity Supports the need to pre-screen for baseline cognitive impairment to identify subjects who will optimally benefit ## Influence of Concomitant Meds - Mean # of meds: 2.3 +/- 1.0 - 40% lithium (Li+) - 64% antipsychotic (AP) - 44% antidepressant (AD) - 56% anticonvulsant (AC) - Stratified (yes/no) - Cognitive benefit was greater in those taking AD or AC weaker in those on Li+ or AP ## Influence of Concomitant Medications % variance explained in Δ score significantly > in AP-free subjects ## III) Measurement Issues in BPD Subjective (self-report) measures of cognitive functioning are not ideal and can be influenced by affective symptoms | Measure | Ham-D | YMR-S | CDS | CFQ | PAOF | |------------|-------|-------|-------|-------|-------| | Digit Span | 0.12 | 0.22 | 0.16 | 0.15 | 0.04 | | Digit Sym | -0.04 | 0.19 | -0.27 | -0.26 | -0.28 | | Trails A | 0.05 | -0.03 | -0.29 | -0.01 | -0.24 | | Trails B | 0.07 | -0.10 | -0.17 | 0.08 | -0.11 | | CVLT-1-5 | 0.03 | -0.17 | 0.08 | 0.18 | -0.05 | | Global Z | -0.05 | -0.15 | -0.02 | 0.15 | -0.10 | # Criteria for Consensus Battery in SZ ## Battery: - Inclusion of the seven cognitive domains - Valid assessment of cognition at the level of all individual major cognitive domains #### **Individual Tests:** - High test-retest reliability - High utility as a repeated measure - Demonstrated relationship to functional outcome - Demonstrated tolerability and practicality # MATRICS Consensus Cognitive Battery ## **Speed of Processing** - Category Fluency - BACS Symbol Coding - Trial Making A ## **Attention / Vigilance** Continuous Performance Test Identical Pairs version ## **Working Memory** - Maryland Letter Number Span - WMS Spatial Span ## **Verbal Learning** Hopkins Verbal Learning Test ## **Visual Learning** Brief Visuospatial Memory Test ## Reasoning & Problem Solving NAB Mazes ## **Social Cognition** MSCEIT Managing Emotions ## Relative Weaknesses of MCCB in BPD # Executive Functioning in BPD # Verbal Learning in BPD Meta-analytic data from Bora et al. 2008 # Social Cognition in BPD Comparison data from Bora et al. 2005 ## Measurement Recommendations - MCCB provides an ideal starting point - MCCB "Plus" might include: - Substitution of tasks with less sensitivity or addition of tasks in these domains - Additional measures of affective-based cognition (Emotion recognition; Affective Stroop) that may be disease-specific - Decision-making and probabilistic learning tasks shown to activate brain regions implicated in affect regulation # The International Society for Bipolar Disorders—Battery for Assessment of Neurocognition (ISBD-BANC) | Table 4. Final proposed cognitive battery for bipolar disorder | | | | | | | |--|---|-----------------|-----------------|-------------------|--|--| | Cognitive domain | Neuropsychological test | MCCB
subtest | Subtest
type | Duration
(min) | | | | Speed of processing | Brief Assessment of Cognition in Schizophrenia
(BACS): Symbol Coding | Yes | Core | 3 | | | | | Category Fluency: Animal Naming | Yes | Core | 2 | | | | | Trail Making Test-part A | Yes | Core | 2 | | | | Attention/vigilance | Continuous Performance Test-Identical Pairs (CPT-IP) | Yes | Core | 13 | | | | Working memory | Wechsler Memory Scale-3 Letter-Number Sequencing | Yes | Core | 6 | | | | | Wechsler Memory Scale-3 Spatial Span | Yes | Core | 5 | | | | Verbal learning/memory | Hopkins Verbal Learning Test-Revised | Yes | Substitute | 5 | | | | Verbal learning/memory | California Verbal Learning Test | No | Substitute | 10 | | | | Visual learning | Brief Visuospatial Memory Test-Revised | Yes | Core | 5 | | | | Executive function | Stroop Test | No | Core | 5 | | | | | Trail Making Test-part B | No | Core | 5 | | | | | Wisconsin Card Sorting Test | No | Optional | 20 | | | | Table 2. Promising cognitive tests that may be relevant to bipolar disorder | | | | | |---|---|--|--|--| | Test | Primary cognitive abilities involved | | | | | Hayling Sentence Completion
Test (HSCT) | Inhibitory control | | | | | CANTAB IDED | Mental set shifting,
reversal learning | | | | | Tower of London (and variants) | Planning, inhibition,
working memory | | | | | Balloon Analogue Risk Task (BART) | Decision making/risk taking | | | | | Theory of Mind Advanced Test | Theory of mind | | | | #### **Consensus Article** Lakshmi N Yatham^a, Ivan J Torres^{a,b}, Gin S Malhi^c, Sophia Frangou^d, David C Glahn^e, Carrie E Bearden^f, Katherine E Burdick^g, Anabel Martínez-Arán^h, Sandra Dittmannⁱ, Joseph F Goldberg^j, Aysegul Ozerdem^k, Omer Aydemir^l and K N Roy Chengappa^m # Preliminary Recommendations - Patients to enroll should ideally be - <u>Euthymic</u> or subthreshold sxs controlled for at randomization - Cognitively impaired with objective evidence of deficit at screen - Mixed subtypes (BPI and BPII with and without psychosis history) provided they meet cognitive threshold defined - <u>Limited comorbid diagnoses</u> where feasible - Limited in number of <u>psychotropic medications</u> (and/or type depending on agent being tested) # Preliminary Recommendations - Trial design should consider - Duration of trial long enough to adequately test agent; short enough to avoid cycling - Treatment with adjunctive agent most feasible – monotherapy where appropriate - Measurement of cognitive outcome should be comprehensive - Sensitive/specific to BPD - Objective # Acknowledgements #### Mount Sinai School of Medicine Katie Mahon Manuela Russo Mercedes Perez-Rodriguez Megan Shanahan Liz Ramjas Justin Turpin Pamela Sklar Dan Iosifescu James Murrough Joseph Goldberg Sophia Frangou #### Zucker Hillside Hospital Anil Malhotra Phil Szeszko Pamela DeRosse Yaniv Shaya Nisali Gunawardane Nisha Chitkara Raphael Braga