Introduction

Approximately half of the trials of newer marketed antidepressants in the US Food and Drug Administration (FDA) database failed to demonstrate superiority over placebo. A meta-analysis was conducted to identify trial and patient characteristics that could potentially predict placebo response and drug-placebo separation in response rate academic sites, study drug, completion rate, postbaseline medication use, study year, and median baseline HAM-D score. To adjust for the possible confounding effect of study year on other predictor variables, sensitivity analyses removing the studies that did not meet the inclusion criteria, 30 double-blind, placebo-controlled trials were included. Drug-placebo separation was most strongly predicted by academic sites, study drug (DVS vs VEN), year of study, and median baseline HAM-D score. Placebo response, defined as demonstrable symptomatic improvement despite inactive treatment, is a major concern in clinical trials of psychotropic medications.

Results

Thirty trials that comprised 8,933 depressed patients were included. Drug-placebo separation was most strongly predicted by academic sites, placebo-only treatment, year of study, and median baseline HAM-D score. Greater severity and longer duration of illness also have been associated with greater drug-placebo separation. Results suggest that future trials should be designed to reduce placebo response through increasing minimum severity criteria. In the multivariate meta-regression model, when all three variables were included, the placebo-only treatment effect size, year of study, and median baseline HAM-D score maintained significance in the multivariate analysis.

Conclusions

Assisted sites provide significant value to clinical trials of psychiatric disorders. Recent efforts to reduce placebo response through increasing inclusion criteria may be misguided.

Method

Trial Selection

The 30 trials included in this analysis were among those that comprised 8,933 depressed patients. These trials were identified in the Pfizer database. Of the 8,933 patients, 3,417 patients were assigned to the placebo arm and 5,516 were assigned to the drug arm. The characteristics of these medications, or aspects of trial design and administration by the sponsor, may limit the generalization of the results. To adjust for the possible confounding effect of study year on other predictor variables, sensitivity analyses removing the studies that did not meet the inclusion criteria, 30 double-blind, placebo-controlled trials were included. Placebo response, defined as demonstrable symptomatic improvement despite inactive treatment, is a major concern in clinical trials of psychotropic medications.

Figure 1. Selection of Trials for Inclusion in Analysis

Figure 2. Forest Plots of Placebo and Drug-Placebo Separation Effect Sizes

Discussion

Conclusions

Public trust in the results of clinical trials for new treatments may be enhanced through greater awareness of academic research sites.

References

Abstract

Introduction: Placebo response, defined as demonstrable symptomatic improvement despite inactive treatment, varies widely in clinical trials employing subjective outcomes, particularly in psychiatric disorders. In antidepressant studies, placebo effects complicate the detection of true treatment effects and appear to be increasing over time. This meta-analysis of placebo-controlled studies of venlafaxine and desvenlafaxine (administered as desvenlafaxine succinate) was conducted to identify trial and patient characteristics that may impact placebo response and signal detection in studies of major depressive disorder (MDD).

Methods: Trial design characteristics and patient-level data from all phase 2 to 4 clinical trials of MDD performed by the manufacturers of venlafaxine and desvenlafaxine were analyzed. Trials were selected if they were conducted with adult outpatients, used a double-blind, placebo-controlled design, and were 6 to 12 weeks in duration. Trials limited to inpatients or geriatric patients were excluded. Data that could potentially affect treatment outcomes were analyzed. Study design characteristics included number of postbaseline study visits, treatment arms, and assessments per visit, duration of the trial, fixed vs flexible dosing, and drug. Characteristics of the research environment included year of study, percent of US and academic sites, and proportion of completers. Patient characteristics included age, sex, race, and mean and median baseline MDD severity. Treatment outcomes included differences in standardized mean in the 17-item Hamilton Rating Scale for Depression (HAM-D17) score and the risk ratio for response (ie, ≥50% reduction in HAM-D at end point) between antidepressant and placebo, mean change in HAM-D and response in placebo patients, and study outcome (significant drug-placebo separation at end point). Univariate meta-regression models assessed the effect of predictor variables that may be associated with the defined outcomes. To adjust for confounding effects among predictor variables, multivariate meta-regression models also were performed.

Results: Thirty trials that comprised 8933 depressed patients were included. Drug-placebo separation was most strongly predicted (β=3.74, P=0.0002) by the proportion of academic sites in the trial. Other factors predicting significant drug-placebo separation included lower completion rate, greater number of postbaseline visits, earlier year of study, greater percentage of whites, and studies conducted with venlafaxine vs desvenlafaxine. Lower median baseline depression severity predicted significant separation in response rates. Only the proportion of academic sites stayed as a significant predictor in the multivariate meta-regression modeling for both continuous change scores and response rates.

Conclusions: Academic sites provide significant value to clinical trials of psychiatric disorders. Recent efforts to reduce placebo response through increasing minimum severity criteria may be misguided.

Introduction

- Approximately half of the trials of newer marketed antidepressants in the US Food and Drug Administration (FDA) database failed to demonstrate superiority over placebo.
 - The mean drug-placebo difference was approximately 1.8 on the HAM-D, which is below the 3-point difference the National Institute for Clinical Excellence uses to denote clinical significance.
 - A commonly cited reason for failed MDD trials is the increase in placebo response observed over the last 3 decades.

- Placebo response has been attributed to a variety of factors: regression to the mean, spontaneous recovery, expectation bias, clinical attention, unreliable measurement, and inclusion of inappropriate patients.
- Greater severity and longer duration of illness also have been associated with greater drug-placebo separation in some, but not all studies.
- Trial design factors associated with greater placebo effects include greater numbers of treatment arms and trial visits, and flexible rather than fixed dosing.
- We performed a meta-analysis to examine factors associated with placebo response and the detection of antidepressant efficacy using data from all short-term trials of 2 marketed antidepressant medications (ie, venlafaxine and desvenlafaxine).
- Variables related to 3 aspects of clinical trial design and conduct (patient, study design, and research environment characteristics) were assessed.

Method

Trial Selection

- We identified all phase 2 to 4, placebo-controlled trials of venlafaxine or desvenlafaxine in the Pfizer database as of March 1, 2011.
- Inclusion criteria:
 - Studies were required to be conducted with outpatients 18 to 65 years of age with a primary diagnosis of MDD.
 - All trials were required to be 6 to 12 weeks in duration, to administer treatment in a double-blind manner, and to use the HAM-D as a depression severity measure.

- Exclusion criteria:
 - Lifetime diagnosis of bipolar disorder or a psychotic disorder.
 - Current substance abuse or dependence or a primary diagnosis of any other psychiatric disorder also were excluded.
 - Use of other psychoactive medications during the trials was prohibited; however, several trials allowed the use of ≥6 doses of hypnotic medications during the first 2 weeks of treatment.
 - Studies with trial arms that used doses below the FDA-approved dosing ranges were excluded.

Factors Examined

- Fifteen variables that could potentially predict placebo response and drug-placebo separation were assessed (Table 1).

Table 1. Potential Predictors of Drug-Placebo Separation and Placebo Response

<table>
<thead>
<tr>
<th>Predictor Characteristics</th>
<th>Study Design Characteristics</th>
<th>Research Environment Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean</td>
<td>Treatment arms, #</td>
<td>Study initiation, year</td>
</tr>
<tr>
<td>Sex</td>
<td>Assessments/visit, #</td>
<td>US sites, %</td>
</tr>
<tr>
<td>Race (white vs other)</td>
<td>Postbaseline visits, #</td>
<td>Academic sites, %</td>
</tr>
<tr>
<td>Baseline depression severity, mean, median</td>
<td>Trial duration, weeks</td>
<td>Study completers, %</td>
</tr>
<tr>
<td>Dosing (fixed vs flexible)</td>
<td></td>
<td>Study drug (VEN vs DVS)</td>
</tr>
</tbody>
</table>

Abbreviations: DVS, desvenlafaxine; VEN, venlafaxine.
Treatment Effects
> For both placebo treatment effect and drug-placebo difference, the following outcomes were calculated
> - HAM-D change score, mean
> - HAM-D response rate
> > ≥50% reduction in HAM-D score from baseline to end point
> - Probability of positive study outcome
> - Statistically significant drug-placebo separation at end point
> All analyses were based on the last-observation-carried-forward approach

Statistical Analysis
> All analyses were performed using the intent-to-treat sample
> All statistical tests were 2-sided with a significance level of \(\alpha = 0.05 \)
> - No adjustments were made for multiple comparisons
> Meta-analyses and univariate meta-regression models were performed using the Comprehensive Meta-Analysis Software System, Version 2 (Biostat, Inc., Englewood, N.J.)
> To adjust for confounding effects among predictor variables, multivariate meta-regression models also were performed using "metaglm" command of STATA statistical software, Version 10 (Stata Corp, College Station, TX)
> - To account for variability among studies, the primary analysis used a random effects model
> - Continuous outcomes were analyzed using a linear meta-regression model, and a logistic meta-regression model was used for binary outcomes
> To adjust for the possible confounding effect of study year on other predictor variables, sensitivity analyses were performed by stratifying the studies using the median year of study (2000) as the cut point

Results

Assessed Studies
> The sponsor’s database contained 131 phase 2, 3, or 4 studies of either venlafaxine or desvenlafaxine. After removing the studies that did not meet the inclusion criteria, 30 double-blind, placebo-controlled trials were eligible (Figure 1)

Figure 1. Selection of Trials for Inclusion in Analysis

Placebo Effects

Figure 2. Forest Plots of Placebo and Drug-Placebo Separation Effect Sizes
Detecting Antidepressant Efficacy:

Treatment Effects

For both placebo treatment effect and drug-placebo difference, the following outcomes were calculated:

- HAM-D17 baseline to end point change score, mean
- Placebo response, defined as demonstrable symptomatic improvement despite inactive treatment,
- HAM-D17 effect size
- HAM-D17 response rate

and signal detection in studies of major depressive disorder (MDD).

Predictor

- Statistically significant drug-placebo separation at end point
- To adjust for confounding effects among predictor variables, multivariate meta-regression models also were
- To account for variability among studies, the primary analysis used a random effects model
- To adjust for the possible confounding effect of study year on other predictor variables, sensitivity analyses

Results

The sponsor's database contained 131 phase 2, 3, or 4 studies of either venlafaxine or desvenlafaxine. After

The most consistent predictor of statistical drug-placebo separation was the percentage of trial sites based in an academic institution

Table 1. Potential Predictors of Drug-Placebo Separation and Placebo Response and the Detection of Antidepressant Efficacy Using Data from All Short-Term Trials of 2 Marketed Antidepressant Medications (ie, Venlafaxine and Desvenlafaxine)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>HAM-D17, Change Score</th>
<th>HAM-D17, Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Univariate Meta-Regression</td>
<td>Multivariate Meta-Regression</td>
</tr>
<tr>
<td>Completion Rate, %</td>
<td>Standardized β</td>
<td>P-value</td>
</tr>
<tr>
<td>Year of Study</td>
<td>-3.09</td>
<td>0.0020</td>
</tr>
<tr>
<td>Study Drug (DVS vs VEN)</td>
<td>2.85</td>
<td>0.0043</td>
</tr>
<tr>
<td>Assessments per Visit</td>
<td>2.47</td>
<td>0.0134</td>
</tr>
<tr>
<td>Academic Sites, %</td>
<td>3.71</td>
<td>0.0002</td>
</tr>
<tr>
<td>Study Drug (DVS vs VEN)</td>
<td>-3.55</td>
<td>0.0004</td>
</tr>
<tr>
<td>Completion Rate, %</td>
<td>-2.77</td>
<td>0.0056</td>
</tr>
<tr>
<td>Year of Study</td>
<td>-2.64</td>
<td>0.0083</td>
</tr>
<tr>
<td>White Race, %</td>
<td>-2.22</td>
<td>0.0266</td>
</tr>
<tr>
<td>Postbaseline Visits, #</td>
<td>2.09</td>
<td>0.0363</td>
</tr>
</tbody>
</table>

Abbreviations: DVS, desvenlafaxine; HAM-D17, 17-item Hamilton Rating Scale for Depression; VEN, venlafaxine.

Table 2. Significant Predictors of Change in HAM-D17 Score and Response Rate Among Patients Treated With Placebo

<table>
<thead>
<tr>
<th>Predictor</th>
<th>HAM-D17, Change Score</th>
<th>HAM-D17, Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Univariate Meta-Regression</td>
<td>Multivariate Meta-Regression</td>
</tr>
<tr>
<td>Completion Rate, %</td>
<td>3.67</td>
<td>0.0002</td>
</tr>
<tr>
<td>Year of Study</td>
<td>3.57</td>
<td>0.0004</td>
</tr>
<tr>
<td>Study Drug (DVS vs VEN)</td>
<td>2.53</td>
<td>0.0113</td>
</tr>
<tr>
<td>Assessments per Visit</td>
<td>2.47</td>
<td>0.0134</td>
</tr>
</tbody>
</table>

Table 3. Significant Predictors of Differences in HAM-D17 Score and Response Rates in Patients Treated With Venlafaxine or Desvenlafaxine vs Placebo

Figure 3. Effect Sizes of Placebo Treatment and Drug-Placebo Differences Over Time

Figure 4a. Relationship Between the Percentage of Academic Sites in a Trial and the Year of Study Initiation

Figure 4b. Relationship Between the Percentage of Academic Sites in a Trial and the Effect Size of Drug-Placebo Difference
Detecting Antidepressant Efficacy: Correlation Analyses

– HAM-D17 response rate

Standardized Predictor P-value Standardized P-value

Trial design characteristics and patient-level data from all phase 2 to 4 clinical trials of MDD per-

Methods:

Abbreviations: DVS, desvenlafaxine; HAM-D17, 17-item Hamilton Rating Scale for Depression; VEN, venlafaxine.

Meta-analyses and univariate meta-regression models were performed using the Comprehensive Meta-Analy-

 To adjust for confounding effects among predictor variables, multivariate meta-regression models also were

Desvenlafaxine vs Placebo

 To adjust for the possible confounding effect of study year on other predictor variables, sensitivity analyses

Academic Sites, % 3.74 0.0002 2.24

0.034 0.035 0.035

Academic sites provide significant value to clinical trials of psychiatric disorders. Recent efforts to

reduce placebo response through increasing minimum severity criteria may be misguided.

The sponsor’s database contained 131 phase 2, 3, or 4 studies of either venlafaxine or desvenlafaxine. After

removing the studies that did not meet the inclusion criteria, 30 double-blind, placebo-controlled trials were

– Studies were required to be conducted without patients 18 to 65 years of age with a primary diagnosis of MDD

Discussion

 Completion rate, year of study, study drug, and assessments per visit emerged as significant predictors of HAM-D17 change score in the placebo group, while US and academic sites, completion rate, and median baseline HAM-D17 were significant predictors of placebo response (univariate analyses)

In the univariate analyses significant predictors of drug-placebo separation in HAM-D17 change score were academic site, study drug, completion rate, number of postbaseline visits, year of study, and white race, while for drug vs placebo separation in response rate academic sites, study drug, completion rate, postbaseline visits, year of study, and median baseline HAM-D17 were significant predictors

However, only academic site and median baseline HAM-D17 maintained significance in the multivariate analyses of drug-placebo separation

The most consistent predictor of statistical drug-placebo separation was the percentage of trial sites based in an academic institution

Specifically, a higher proportion of academic sites predicted lower placebo response rate, greater drug-placebo separation, and a greater likelihood of positive study outcome

We believe this is the first published analysis to document the potentially negative impact of the decreasing use of academic sites in industry-sponsored clinical trials

We also found that the percentage of academic sites participating in MDD trials has declined over the past 20 years

– Until the 1990s, nearly all studies were conducted at academic centers

Today, with the large number of trials that require rapid recruitment, academic sites represent a small fraction and contribute an even smaller number of the total enrolled patients

Strengths of this analysis are the inclusion of all trials conducted for this indication with these medications, thus eliminating the possibility of publication bias that can reduce the validity of meta-analyses. We were also able to evaluate a large number of variables, and thereby allow for more comprehensive multivariable analyses

Limitations include the restriction to only two antidepressants studied by a single company. Unique characteristics of these medications, or aspects of trial design and administration by the sponsor, may limit generalizability of our findings

Conclusion

– Public trust in the results of clinical trials for new treatments may be enhanced through greater involvement of academic research sites

References