Increasing Sample Size in Clinical Trials: Considerations Beyond Power

Andrew Potter, PhD
Division of Biometrics 1, OB/OTS/CDER, FDA
ISCTM 14th Annual Scientific Meeting – Feb. 20, 2018
Washington, D.C.
Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA’s views or policies.
What is a Treatment Effect?

• The effect of the a drug compared to a control – active or placebo
 – In this presentation, consider a short term depression trial with the treatment effect measured by difference in mean HAM-D scores

• \[\delta = \mu_{trt} - \mu_{plb}, \] where \(\delta \) is the treatment effect, \(\mu_{trt} \) is the treatment mean HAM-D score, and \(\mu_{plb} \) is the placebo mean HAM-D score
 – Estimated by difference in adjusted means
Variability of Treatment Effect

• Variability of treatment effect depends on:
 – Sample size (N)
 – Standard deviation of HAM-D scores \((\sigma_{trt}, \sigma_{plb})\)
 • Assumed to be equal \((\sigma = \sigma_{trt} = \sigma_{plb})\)
 • Assumed to be homogeneous across all study sites

• Standard error \(se(\hat{\delta}) \sim \sqrt{2}\frac{\sigma}{\sqrt{n}}\)
 – In theory, precision increases with increasing sample size
 – Events in a specific trial can violate assumptions
Potential Considerations relating to Sample Size and Precision

• Sufficient to detect expected treatment effect
 – Bayesian criteria: Probability of Success
 – Frequentist criteria: Power

• Study population should be large enough to provide reasonable robustness of results

• Study population should have enough sample to cover important subgroups
 – Regional and Geographic
 – Gender, Race, etc.

• Sufficient patients exposed in the drug development program to detect a safety signal
 – Discussed in ICH E1
Traditional Power Analysis: How Large a Trial to Detect a Treatment Effect

- Total sample size for a trial design to detect treatment effect δ assuming
 - Common σ in both arms
 - 90% power
 - 5% alpha – 2 sided
 - Equal allocation
 - Calculated using EAST 6

<table>
<thead>
<tr>
<th>Standardized Effect Size $d = \frac{(\mu_{trt} - \mu_{plb})}{\sigma}$</th>
<th>Total Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>4203</td>
</tr>
<tr>
<td>0.2</td>
<td>1051</td>
</tr>
<tr>
<td>0.3</td>
<td>467</td>
</tr>
<tr>
<td>0.4</td>
<td>263</td>
</tr>
<tr>
<td>0.5</td>
<td>169</td>
</tr>
<tr>
<td>0.6</td>
<td>117</td>
</tr>
<tr>
<td>0.7</td>
<td>86</td>
</tr>
<tr>
<td>0.8</td>
<td>66</td>
</tr>
</tbody>
</table>
Treatment Effect Variation Compared by Sample Size: MDD

Figure 1. Treatment Effect Relative to Placebo (drug-placebo difference) Based on Mean Change From Baseline to Endpoint (LOCF) in HDRS Total Scores in US and Non-US MDD Trials

A. US Trials

B. Non-US Trials

Notes:
- Dashed lines indicate mean treatment effect.
- Abbreviations: HDRS = Hamilton Depression Rating Scale, LOCF = last observation carried forward, MDD = major depressive disorder.
Treatment Effect Variation Compared by Sample Size: Schizophrenia

Potential Issues of Smaller Trials

• Has an adequate sample of patients been exposed to allow an assessment of safety?

• How robust are the treatment effect estimates?
 – Smaller trials have greater inter-trial variability
 – Another small trial may not show the same treatment effect

• How should the trial results be extrapolated from narrow study population to the general population?
 – Unsure how to label drug for general population
 – May not have sufficient sample size in important subgroups
 – Study population may not capture within region variation
Potential Issues of Larger Trials

• Has trial conduct been consistent across a large number of sites?
 – Larger trials typically have more sites compared to smaller trials
 – Site to site variation in training of study procedures
 – Varying site quality

• Has standard of care changed during trial enrollment?

• How homogeneous is the trial population?
 – Larger trials usually enroll a broader population than smaller trials
 – Leads to larger between patient variation