Don’t Change the Subject!
The Changing Nature of Screened Subjects During Phase 3 Clinical Trials
Shiovitz TM1,2, Steinmetz CB1, Fox BL1, Schoneberg SH1, Dahan AH2
1CTSdatabase LLC, Sherman Oaks, CA; 2California Neuroscience Research, Sherman Oaks, CA

ABSTRACT
Introduction: Clinical trial recruitment and enrollment are affected by a number of factors, such as use of recruitment vendors, the use of sites known to the sponsor and subjects known to the site early in the recruitment process, and addition of sites and pressure to increase enrollment later in the study. Previous reports describe placebo response increasing later in enrollment; we seek to understand more about how subjects enrolled early in a clinical trial might differ from those enrolled later in the same study. Our registry, which seeks to track and eliminate duplicate and professional subjects in clinical trials, has collected data on over 40,000 subjects screened or prescreened for clinical trials, especially for Phase 2–4 studies of CNS indications.

Methods: We looked at pooled study data for all subjects screened for Phase 3 studies that have used CTSdatabase and are completed at or least 75% enrolled (n = 4352). Only actionable matches that occurred at unique sites were included in the analysis. Actionable matches are exclusionary per protocol and include concurrent enrollment, participation in another study less than the number of days required by I/E criteria or previously enrolled in a study for a prohibited indication (e.g. Bipolar in an ADHD study). For each study, total subjects screened were divided into four equal quartiles based on enrollment and the results were pooled for analysis. Study indications included Schizophrenia (n=2), Binge Eating Disorder (BED, n=1) and Adult ADHD (n=2).

Results: 103 Actionable Matches were found among 4352 subjects screened through December 29, 2017. The overall percentage of Actionable Matches in these studies was 2.4%.

• When investigated by quartile, the percentages of excluded subjects were: 1.6%, 2.1%, 3.2% and 2.8% in quartiles 1-4, respectively.

• There were fewer study-inappropriate subjects (subjects who are likely duplicate/professional) excluded in the 1st quartile (p=0.096) and significantly more in the 3rd quartile (p=0.012) of enrollment.

• The percentage of exclusionary matches/inappropriate subjects in the second half of enrollment (3.0%) was significantly higher compared to the percentage found in the first half (1.8%). Comparing quartiles 1+2 vs. quartiles 3+4 showed statistical significance, p = 0.012.

DISCUSSION
• Deception by research subjects is a common occurrence. Duplicate and professional subjects may magnify inclusionary or deny exclusionary conditions and are often nonadherent.1-4

• Subjects excluded from studies by a registry are a marker for inappropriate or professional subjects.

• Our data support a hypothesis that subjects enrolled later in Phase 3 studies are more likely to be study inappropriate.

• This may be due to “quantity over quality” factors such as pressure to maintain study timelines, increased recruitment pressures and the exhaustion of the pool of qualified participants at any given site.

• Phase 3 data on inappropriate and nonadherent subjects could be compared to Phase 2 data.

• If subjects enrolled later in Phase 3 trials differ from those entered in successful Phase 2 studies, and they are not accounted for, they may contribute to study failure.

CONCLUSIONS
• Our data indicate that subjects enrolled later in Phase 3 studies may be more likely to be duplicate enrollees or excluded for not meeting other study criteria.

• Further studies could help determine if rates of these inappropriate subjects differ from Phase 2 studies or correlate with enrollment efforts or rates of nonadherence.

• If subjects enrolled later in Phase 3 trials differ from those entered in successful Phase 2 studies, they may contribute to study failure.

• These subjects may be accounted for through use of subject registries that track previous/concurrent study participation indications.

REFERENCES

Financial Disclosure: None of the authors have received financial support for this poster. Potential Conflict of Interest: Dr. Shiovitz is the owner of CTSdatabase, LLC.

Presented at ISCTM 34th Annual Scientific Meeting February 21, 2018 in Washington, D.C.