Cognitive Endpoints for Early Alzheimer’s Disease Trials: Development of the Early AD/ MCI Alzheimer’s Cognitive Composite (EMACC)

Judith Jaeger, PhD\(^1\), Clint Hagen, MS\(^2\), Henrik Loft, PhD\(^3\), Yen Ying Lim, PhD\(^4\), Andrew Aschenbrenner, PhD\(^5\), Marta Segerdahl, MD, PhD\(^3\), Gary Tong, MD, PhD\(^3\), Michelle Mielke, PhD\(^2\), Jason Hassenstab\(^5\), PhD, Nikki Stricker, PhD\(^2\)

(1) Albert Einstein College of Medicine, Bronx, NY and CognitionMetrics, LLC, Wilmington, DE, USA
(2) Mayo Clinic, Rochester, MN, USA
(3) H. Lundbeck A/S, Valby, Denmark
(4) The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
(5) Washington University in St. Louis, St. Louis, MO

The Methodological Question Being Addressed
What is the optimal method for endpoint selection for testing disease modifying drugs in Early Alzheimer’s Disease (EAD)?

Introduction
As an alternative to current measures of clinical disease progression, a composite battery of objective neuropsychological tests that are normally distributed and sensitive to improvement OR decline may be more sensitive to a drug effect than clinical rating scales that were developed to track decline.

Data driven methods for establishing cognitive composite endpoints have been applied previously in preclinical AD (Donohue et al\(^1\), Langbaum et al\(^2\), Hassenstab et al\(^3\)). Floor effects on these endpoints in EAD suggest a different cognitive composite may be required for later disease stages, so a cognitive composite suitable for global clinical trials in the Early AD or MCI stages of disease is needed.

Methods
We conducted parallel independent but identical analyses in 4 longitudinal cohorts of elders in which a total of 1,167 clinically normal (CN) β-amyloid negative (Aβ-; confirmed with amyloid PET imaging) and 516 individuals with confirmed Aβ+ PET scans meeting criteria for MCI or EAD (i.e. including also mild AD with CDR=0.5 or 1) were compared with respect to slope decline on a battery of neuropsychological tests. Cohorts included AIBL, ADNI, MCSA and WUSTL.* Neuropsychological test variables were restricted to those that could be reliably used in a global trial (i.e., not requiring a neuropsychologist, readily subject to linguistic/ cultural adaptation). Standardized slopes were computed within the EAD/MCI Aβ+ subgroup on all possible combinations of composites containing between 4 and 8 test variables and rank ordered. This step was conducted at years 2, 3 and 4. The EAD/MCI Alzheimer’s Cognitive Composite (EMACC) was constructed from tests falling in the top ranked composites in each cohort at all time points. Effect size separation on EMACC from CN Aβ- controls at each time
point was then compared to conventional endpoints (i.e. CDR Sum of Boxes (SB), Mini Mental Status Examination (MMSE)) using Linear Mixed Model (LMM) analysis.

Results
Commonalities of tests and domains measured were observed across the highest ranking (top 10) slope composites across time and across the 4 cohorts (i.e. word list learning was represented in almost all solutions and overall substantial overlap in test paradigms and cognitive functions measured was observed). The EMACC (see table 1) consists of validated measures of episodic memory, executive functioning, and processing speed. Overall the EMACC performed better or comparably to other endpoints and offers a cognitive endpoint for EAD trials. Additional details of the methods employed, sample characteristics, and preliminary validation of the EMACC will be presented.

Conclusion
The EMACC is a new and sensitive composite of well-known and validated neuropsychological tests that is suitable for examining the effect of disease modifying compounds on cognitive decline in the EAD or MCI stage of Alzheimer’s disease.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Paradigm</th>
<th>ADNI Test</th>
<th>ADNI Measure</th>
<th>AIBL Test</th>
<th>AIBL Measure</th>
<th>WUSTL Test</th>
<th>WUSTL Measure</th>
<th>MCSA Test</th>
<th>MCSA Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>Word list learning</td>
<td>RAVLT</td>
<td>Trials 1-5</td>
<td>CVLT</td>
<td>Trials 1-5</td>
<td>FC-SRT</td>
<td>Free Recall</td>
<td>RAVLT</td>
<td>Trials 1-5</td>
</tr>
<tr>
<td></td>
<td>Digit Span</td>
<td>WAIS-R DS</td>
<td>Forw+Back</td>
<td>WAIS-R DS</td>
<td>Forward</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fluency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Category fluency</td>
<td>Animals</td>
<td>Category fluency</td>
<td>Animals</td>
<td>Category fluency</td>
<td>Animals+ Vegetables</td>
<td>Category fluency</td>
<td>Animals+ fruits+ vegetables</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Letter Fluency</td>
<td>FAS</td>
<td>Letter Fluency</td>
<td>FAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Executive + Psychomotor</td>
<td>Trailmaking</td>
<td>Trails A (secs)</td>
<td>Trails B (secs)</td>
<td>Stroop</td>
<td>Trails A (secs)</td>
<td>Trails B (secs)</td>
<td>Trailmaking Test</td>
<td>Trails A (secs)</td>
<td></td>
</tr>
<tr>
<td>Conflict Inhibition</td>
<td>Trailmaking Test</td>
<td>Tr</td>
<td></td>
<td>Col</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td>Tr</td>
<td></td>
</tr>
<tr>
<td>Coding</td>
<td>ADAS Number Canc</td>
<td>Total score</td>
<td>DSST</td>
<td>Total score</td>
<td>DSST</td>
<td>Total score</td>
<td>DSST</td>
<td>Total score</td>
<td></td>
</tr>
</tbody>
</table>

* AIBL= Australian Imaging, Biomarkers and Lifestyle study, ADNI= Alzheimer’s Disease Neuroimaging Initiative (ADNI), MCSA= Mayo Clinic Study of Aging (MCSA), WUSTL= Knight Alzheimer’s Disease Research Center at Washington University in St Louis.

CITATIONS:

Disclosures:

This work was supported by Lundbeck Pharmaceuticals. Henrik Loft, Marta Segerdahl and Gary Tong are employees of Lundbeck. Judith Jaeger is President and owner of CognitionMetrics, LLC which received funding from Lundbeck to support this work. Jason Hassenstab, Yen Lim and Andrew Ashenbrenner received funding from Lundbeck to support this work. Michelle Mielke, Clint Hagen and Nikki Strickler are employed by Mayo Clinic which received funding to support this work although these individuals received no direct funding from Lundbeck.