AD Prevention Trials: An Industry Perspective

Robert A. Lasser, MD, MBA
Global Development Lead, Product Development
Group Medical Director, Neurodegenerative Disorders
F. Hoffmann - La Roche Ltd
• Regulatory
 – Precedent – A4, TOMMorow, API Novartis (2E4)
 • Attempts versus Success
 • No approvals
 • No gold standard/validation
 – Scientific consensus as alternative
 – Global perspective (agreement across HA, validation across cultures, etc) must be maintained
 – Demonstrating value still requires multiple studies establishing a clear cognitive-functional link for minimally important change in pre-dementia
Regulatory position: EMA draft guideline

Limited confidence in existing regulatory path?

- **Feasibility**
 - “**feasibility issues** including length of the trial and number of drop-outs are recognized”. “Until a biomarker will be qualified as a reliable surrogate… patients should be followed up for a sufficient time to capture relevant cognitive changes”.

- **Eligibility criteria**
 - “… the diagnostic construct of preclinical AD as well as the disease model in such an early stage **still need to be validated**”. “Population for prevention trials can be enriched”. “… the relative contribution of each risk factor to the onset of the disease is **not yet established** and it is difficult to translate population risk at an individual level”.

- **Trial duration**
 - “Prevention trials require **large samples and long follow up**, typically of **at least 5 years**. However, since scientific information to provide a firm regulatory framework for prevention trials is still lacking, no firm recommendation can be made and therefore scientific advice is recommended in case this is pursued.”

- **Endpoint(s)**
 - “prevention of cognitive impairment” “no "gold standard“… Novel outcome tools… **not yet validated** and cannot be endorsed solely as primary endpoints”. “… time to event analysis could be a complementary measure”.

- End of consultation (deadline for comments) 31 July 2016
Unknows of trial design in preclinical AD
An unattractive prospect for industry?

• Feasibility
 – Patient access and willingness to participate (for many years)
 – Anticipated attrition rates
 – Sample size

• Eligibility criteria
 – Reliability of biomarkers
 – Enrichment for progression

• Trial duration
 – Even longer than current pAD stage trials (5+ years)

• Endpoint(s)
 – Continuous Versus Time to Event
 – Regulatory perspective on defining ‘Clinically Evident Decline’, ‘Disability’ or other event
 – Culturally bound

• Product Label
 – What (differentiated) label might be achieved

• Eventual Market
 – Infrastructure issues on screening and treatment
 – Who to treat and when (relative cost and invasive nature of existing biomarkers prohibitive of large scale adoption)
 – Willingness to treat otherwise healthy individuals (for life) and bear cost
 – Current ability to demonstrate cost savings to health care systems (already a challenge for MCI due to AD/pAD stage)
The path forward

• Cross-industry consortia
 – DIAN
 – Alzheimer’s Prevention Initiative Treatment Trials
 – Opportunity to explore and validate trial design and feasibility questions without bearing full risk
 – Provides an impetus to shift regulatory science
DIAN-TU Cognitive Battery

Considerations in the selection of cognitive tests:

1. Some overlap with the DIAN observational study to allow for comparison and provide continuity

2. Sufficient published validation literature, widely used in pharmaceutical research, and covering main domains of cognition affected by AD

3. Some overlap with measures used in other secondary prevention trials (A4, API and TOMMorrow), so that results can be compared

4. Ease of administration and participant acceptability
API composite cognitive test score

• **Creation of composite**
 – Used longitudinal data from cognitively unimpaired presenilin 1 (PSEN1) E280A mutation carriers
 – Mean-to-standard-deviation ratios of change over time calculated in search for optimal combination of 1 to 7 cognitive tests/subtests
 – Combinations that performed well evaluated for:
 • Robustness across follow-up
 • Occurrence of items within top-performing combinations
 • Representation of relevant cognitive domains

 – Optimal test combination included:
 • CERAD Word List Recall
 • CERAD Boston Naming Test (high frequency items)
 • Mini-Mental State Examination (MMSE) Orientation to Time
 • CERAD Constructional Praxis
 • Raven's Progressive Matrices (Set A)

Ayutyanont et al, 2014
| Summary of cognitive tests used in the four main secondary prevention clinical trials of AD |
|--|--|--|--|--|
| **DIAN-TU** | **A4** | **API** | **TOMMorrow** |
| Computerized | Computerized | Computerized | Computerized |
| **Memory** | **Memory** | **Memory** | **Memory** |
| WMS-R Logical Memory | International Shopping List Test | WMS-R Logical Memory | CVLT-II |
| Cogstate One Card Learning | Cogstate One Card Learning | Cogstate One Card Learning | Cogstate One Card Learning |
| Cogstate One Back | Cogstate One Back | Cogstate One Back | Cogstate One Back |
| Object Pattern Separation Task |
Raven’s Progressive Matrices (12)	Raven’s Progressive Matrices (9)	Raven’s Progressive Matrices (12)	Trail Making B
Executive Function	**Executive Function**	**Executive Function**	**Executive Function**
Digit Span Forward	Digit Span Forward	Digit Span Forward	Digit Span Forward
Trail Making B	Trail Making B	Trail Making B	Trail Making B
Language	**Language**	**Language**	**Language**
Semantic fluency (Vegetables)	Multilingual Naming Test	Multilingual Naming Test	Multilingual Naming Test
Semantic fluency (Animals)	Semantic Fluency (Animals)	Semantic Fluency (Animals)	Semantic Fluency (Animals)
Lexical/Phonemic Fluency (FAS)	Lexical/Phonemic Fluency (FAS)	Lexical/Phonemic Fluency (FAS)	Lexical/Phonemic Fluency (FAS)
Attention	**Attention**	**Attention**	**Attention**
WAIS-R Digit Symbol	WAIS-R Digit Symbol	WAIS-R Digit Symbol	WAIS-R Digit Symbol
Digit Span Forward	Digit Span Forward	Digit Span Forward	Digit Span Forward
Cogstate Detection Identification	Cogstate Detection Identification	Cogstate Detection Identification	Cogstate Detection Identification
Timed Chase Test	Timed Chase Test	Timed Chase Test	Timed Chase Test
Visuospatial	**Visuospatial**	**Visuospatial**	**Visuospatial**
CERAD Constructional Praxis	BVMT-R Figures (copy)	BVMT-R Figures (copy)	BVMT-R Figures (copy)
Global	**Global**	**Global**	**Global**
MMSE	MMSE	MMSE	MMSE
(Orientation)	(Orientation)	(Orientation)	(Orientation)
Other	**Other**	**Other**	**Other**
CDR	CDR	CDR	CDR
MAC-Q	MAC-Q	MAC-Q	MAC-Q
Clock Drawing	Clock Drawing	Clock Drawing	Clock Drawing
Considerations for cognitive test batteries

• What is the correct way to select amongst feasible component tests
 – Clinical presentation of MCI due to AD/prodromal AD?
 – Statistical modelling for optimal signal to noise ratio in measuring disease progression?
 – Patient/caregiver insights into disease burden/impact?
 – Modern psychometrics (IRT)?
 – Association to functional impairment?
 • Ultimately, what is the underlying concept(s) we are attempting to measure?
Doing now what patients need next