Regulatory Issues in the Use of Biomarkers in Phase 2b/3 Studies in Depression and Schizophrenia

Thomas Laughren, M.D.
Director,
Laughren Psychopharm Consulting, LLC
Current Financial Relationships

- Part time employee of MGH CTNI
- Consultant to NIMH
- Consultant to AbbVie, Acadia, Alcobra, Astra Zeneca, Cerecor, Corcept, Curemark, Dart NeuroScience, Edgemont, EnVivo, Fabre Kramer, Janssen, JDS Therapeutics, Lilly, MAPS, Naurex, Neuren, Noven, Pfizer, Retrophin, Reviva, Roche, Shire, Taisho, Targacept, Theravance, Zogenix
- Consultant to ERT, MedAvante
- Consultant to Quinn Emanuel, Ulmer & Berne
Fundamental problem facing psychiatric drug development: Imprecise clinical targets

• Lack of biological understanding
• DSM V released in May, 2013 (with considerable controversy)
 – Irony: Even though few find DSM optimal, we all rely on it
• Major challenge facing our field: Finding better approaches to carving up the psychiatric illness space (i.e., moving beyond DSM)
Moving beyond DSM for Psychiatric Drug Development

- Phenomenological Domains (with or without biological understanding)
 - Within accepted DSM diagnostic entities
 - e.g., CIAS (cognitive impairment associated with schizophrenia)
 - Across diagnostic entities
 - e.g., agitation, impulsivity, a specific cognitive deficit
- Biological subgroups (defined by biomarkers, with or without clinical understanding)
 - Could be based on any of the many different types of biomarkers that have been proposed
 - As with phenomenological domains, could be applied within or across DSM diagnostic entities
- Research Domain Criteria (RDoC)
 - Might think of as way of combining biology and phenomenology
Illustration of the Approach from NIMH Program (Fast-Fail and RDoC)

- FAST-MAS/ Andy Krystal PI
- Fundamental change in POC paradigm
- Move away from DSM toward RDoC constructs
- Focus on target engagement as primary goal of POC
FAST-MAS Anhedonia Program: Summary of Planned Study

• Identify compound of interest
• Identify brain target (circuit) thought to be engaged by that compound (TE)
• Identify biomarker that signals TE
• Identify behavioral construct (preferably RDoC) thought to be represented by the brain target
• Compound was identified
• Ventral striatum (VS) circuit of interest (in particular, activation by monetary incentive delay task in VS)
• fMRI identified as biomarker for VS activation
• Anhedonia is the behavioral construct
 – Snaith-Hamilton Pleasure Scale (SHAPS) used as specific behavioral measure for anhedonia
FAST-MAS Anhedonia Program:
Summary of Planned Study (continued)

• Select patients based on threshold SHAPS score
• Select patients with either MDD or GAD (so cuts across DSM categories)
• Also measure HAM-D and HAM-A
• fMRI is primary outcome
Fundamental regulatory challenge to endorsing an alternative to DSM classification of psychiatric illness

• Need to provide a rationale for alternative approach
• True whether
 – Phenomenological domain
 – Biomarker-defined subgroup
 – RDoC construct
• Key regulatory issue: Pseudo-Specificity
What is pseudo-specificity?

• Potentially artificially narrow claim
• Examples:
 – Demographic subgroup, e.g., depression in women, or in elderly
 – Symptom, or symptom cluster, of defined DSM syndrome, e.g., hallucinations in schizophrenia
 – Comorbid condition, e.g., depression with cardiovascular disease, post-stroke, Parkinson’s disease
 – Subgroup defined by some biomarker without any mechanistic understanding of the relevance of this subgroup
Regulatory agencies initial rejection of claim as “pseudo-specific” might be considered a “straw man” position

- Objection may be overcome with arguments and data to show validity and value of targeting a particular domain or biomarker-defined subgroup
Approaches to overcoming regulatory concern that claim targeting a particular phenomenological domain is pseudo-specific

• Provide evidence that available drug treatments in the class do not address the domain in question
 – Little to no effect of available drugs on this domain
 • Residual phase of illness with persistence of symptoms in this domain
 • Evidence for subtype of disorder, with prominence of symptoms in this domain, and that is not responsive to available treatments
CIAS: Example of successful establishment of domain within schizophrenic syndrome

- CI is a well-established aspect of schizophrenia
- CI is not well addressed by available treatments
- CI has different time course than positive symptoms of schizophrenia
 - Present even before onset of psychosis
 - Still present in “residual” phase of illness
- Regulatory agencies have endorsed CIAS as legitimate target for drug development
Other Domains Within DSM Defined Syndromes that FDA has Accepted as Legitimate Targets for Drug Development

- Negative symptoms of schizophrenia
- Suicidal ideation and behavior in schizophrenia
- Agitation in schizophrenia and bipolar disorder
- Irritability of autism
- Impulsive aggression in ADHD
- Agitation/aggression in dementia
Demonstrating Specificity of a Particular Drug for Treating a Particular Domain or Biomarker-Defined Subgroup?

- Show specificity of response for new drug on this domain or biomarker-defined subgroup
 - New drug treats only this domain or subgroup
 - New drug superior to standard drug on this domain or subgroup
What are Biomarkers?

• Biomarkers are “measureable characteristics that reflect physiological, pharmacological, or disease processes in animals or humans.”
• Biomarkers have many applications in drug development
• Focus here is on interest in finding biomarkers that can predict efficacy or risk associated with drug treatment, i.e., an approach to subgrouping the larger population into:
 — Responsive/non-responsive
 — At risk/not at risk
Different Types of Biomarkers

• Predictive Biomarkers
 – Useful for identifying patient subgroups that respond differentially, either for benefit or for risk

• Prognostic Biomarkers
 – Useful in predicting outcome for subgroups, independent of treatment, e.g., CV risk profile

• Surrogate Biomarkers (Endpoints)
 – Can serve as substitute for clinical endpoint, e.g., blood pressure or cholesterol
Validation (Qualification) of Biomarkers

• Analytical validation
 – Performance of biomarker assay
 – Sensitivity, specificity, PPV, and NPV of assay

• Clinical validation
 – Depends on type of biomarker: prognostic, predictive, or surrogate
 – For predictive, it is sufficient to validate only for a particular drug (RCTs establish clinical validity)
 – For prognostic and surrogate, clinical validation has to be broader
Examples of Biomarkers

- Imaging measures
- Serum assays
- Genetic assays
- Physiological measures
- Histopathologic findings
- Psychological tests
- Demographic variables (age, gender, race)
Two Ways for Biomarker to Subdivide the Population
(Assume Marker: M+/M-)

Biomarker Status
M+/M-

Predicts PK Difference (Exposure)

Predicts PD Difference (Not Exposure Related)

Efficacy Difference

Risk Difference

Efficacy Difference

Risk Difference
Genomic Biomarkers as Predictors of Exposure
(Pharmacokinetic)

• Genetically polymorphic P450s associated with differences in plasma levels, resulting in differences in efficacy and safety
• Several with known differences that are reflected in labeling for certain drugs (including some psychiatric drugs):
 – CYP2B6
 – CYP2C9
 – CYP2C19
 – CYP2D6
Biomarkers as Predictors of Response (Pharmacodynamic)

- **Efficacy**
 - Non-Psychiatric
 - Herceptin (trastuzumab)

- **Safety**
 - Psychiatric
 - Carbamazepine/SJS
Herceptin (trastuzumab)

- Her-2 gene expresses cell surface receptor needed for cell growth
- Her-2 gene over-expresses in about 30% of breast cancers
- Trastuzumab is an antibody that blocks the cell surface receptor
- Kit available for identifying this subgroup of breast cancer patients
- Clinical trials included mostly over-expressing patients
- Labeled Indication: only for over-expressing patients
Carbamazepine/Serious Skin Reactions

• SJS/TEN incidence with carbamazepine
 – 1-6/10,000 in Caucasians
 – 30/10,000 in some Asian countries

• Strong association between HLA-B* 1502 variant and SJS/TEN with carbamazepine
 – Variant found mostly in Asian populations
 – PPV: 0.1; NPV: 1

• Labeling for carbamazepine
 – Test for variant in Asian patients
 – Use alternative drug if positive for allele, unless compelling reason
Practical Issues in Utilizing Biomarkers in Psychiatric Drug Development

• What is needed to get biomarker into labeling?
• Focus on efficacy (safety is somewhat different discussion)
• Importance of coherent hypothesis testing strategy for biomarker program
Approaches to Efficacy Determination in Psychiatric Drug Development (Focus on Responder vs Non-Responder)

• Compare drug and placebo on proportion of “responders”
• Goal: Show population effect [drug beats placebo, i.e., statistically significant p-value (p< 0.05)]
• Need clinically meaningful measure of “response”
• Easier in some areas, e.g., if mortality is the endpoint
• Not so easy in psychiatry: no clear definition of “response”
 – May rely on percentage reduction for standard rating scale (e.g., 50% reduction on HAMD total score), but no universal agreement on such arbitrary definitions
 – Could use “remission,” but few drugs would win if this were the standard
• Another advantage: could think about the value of biomarkers in the language of medical decision making
 • Sensitivity, specificity, PPV, NPV, ROC curves, etc.
Approaches to Efficacy Determination in Psychiatric Drug Development
(Focus on Change from Baseline for Illness Severity Measure)

• Compare drug and placebo on change from baseline to endpoint on a standard measure of illness severity (e.g., MADRS or PANSS total score)
• Most common approach in drug development programs
• Goal: Show population effect [drug beats placebo, i.e., statistically significant p-value (p< 0.05)]
• Rarely try to set a standard for a minimum required “effect size”
• Typically effect sizes for psychiatric drugs are quite modest, however one measures “effect size”
Problems and Challenges in Hypothesis Testing for a Biomarker (Regulatory Expectations for Phase 3 Program)

• Assume focus is on an accepted DSM diagnostic category, e.g., schizophrenia

• Ideal approach from regulatory perspective:
 – Develop a valid and reliable biomarker assay before phase 3
 – Have capability to establish biomarker status for all patients prior to randomization
 – Conduct stratified randomization (M+/M-)
 – Have clear plan for hypothesis testing that includes marker status (+/-) and adjustment for all parameters of interest (marker status, dose, primary and key secondary endpoints)
Deciding on Role of Biomarker in Development Program
(This decision will drive hypothesis testing strategy)

• Sponsor wants broad claim in “population” but also wants to claim added benefit in M+ patients
 – Testing would likely begin in broad population and then proceed to marker subgroups

• Sponsor recognizes that biomarker may “salvage” program that might otherwise fail
 – Might reasonably begin testing with M+ patients and then move to M-
Other Considerations in Programs Including Biomarker Information

• Approaches to including both retrospective and prospective data in support of labeling for biomarker status
• Adaptive strategies to increase power to detect biomarker subset effects (e.g., increasing sample size for M+ group)
• Problem of incompleteness of biomarker information for all patients in sample
• Need for co-development of diagnostic kit for assessment of biomarker status
Summary

• Regulatory agencies are not fundamentally opposed to considering alternative approaches to carving up the psychiatric illness space
• But there is a need to come prepared with strong arguments and data to support an alternative approach to diagnosing psychiatric illness
• Also helpful to have some reasonable consensus in support of the alternative conceptualization
• Also useful to note that robust findings in studies using the alternative approach that show convincing clinical benefits have a way of overcoming initial regulatory reluctance