

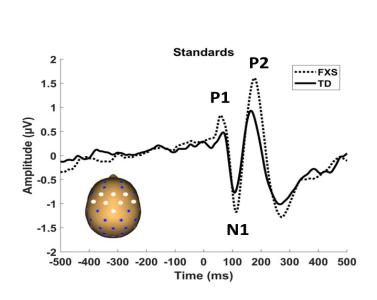
Promises & Practicalities of Neurophysiology in Clinical Trials in Rare Diseases

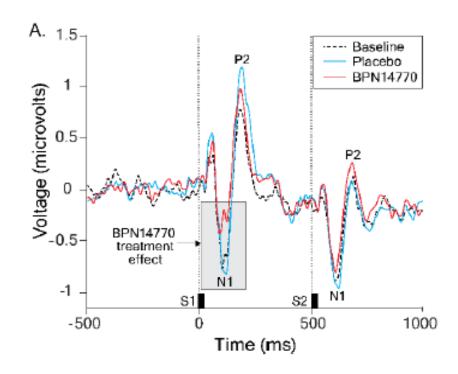
Chairs:

Kemi Olugemo, MD, FAAN Uma Vaidyanathan, PhD

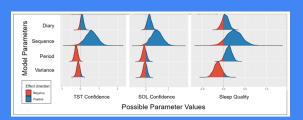
Speakers:

Allyson: Insights from patient journey in drug development, mouse-human models of disease, and consortium for biomarkers




Focus Domain	Measures to consider	Measures specifically assessed for AS
Communication	ORCA BSID-3, BSID-4 VABS-2, VABS-3 Communication Matrix ASVA CGI-AS	ORCA BSID-3, BSID-4 VABS-2, VABS-3 Communication Matrix CGI-AS
Fine Motor	BSID-3, BSID-4 VABS-2, VABS-3 ASVA CGI-AS	BSID-3, BSID-4 VABS-2, VABS-3 CGI-AS
Gross Motor	BSID-3, BSID-4 VABS-2, VABS-3 Actimyo GMFM ASVA CGI-AS	BSID-3, BSID-4 VABS-2, VABS-3 Actimyo CGI-AS
Global	CGI-S-AS, CGI-I-AS Caregiver CGI-AS	CGI-S-AS, CGI-I-AS
ADL	VABS-2, VABS-3 ASVA	VABS-2, VABS-3
dor	QOL Inventory Caregiver Burden Inventory Parent Adjustment Questionnaire EQ-5D-Y Quality of Life Disability Measure	
Cognition	BSID-3, BSID-4 VABS-2, VABS-3 EEG	BSID-3, BSID-4 VABS-2, VABS-3 EEG
Sleep	Sleep Diary Wearables EEG Sleep Mats CGi-AS	EEG Sleep Diary CGl-AS
Seizure	Seizure Diary EEG CGI-AS	Seizure Diary EEG CGI-AS
Behavior	VABS-2, VABS-3 ABC-C BIAPAS	• ABC-C
Biomarkers OME COME	EEG AERP APP (plasma) CSF: UBE3A others	• EEG

Liz: EEG biomarkers to bridge mouse-human models of neurodevelopmental disorders

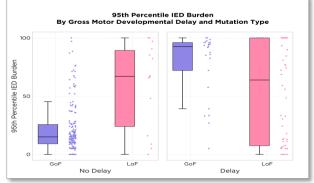


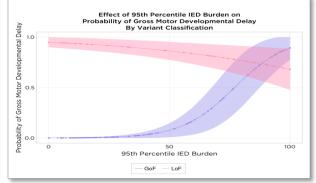
Justin: Considerations in assessing sleep via PSG, EEG

Consideration 1 – Signal Averaging

- In signal processing, it is mathematically guaranteed that averaging two signals in the time domain that have uncorrelated sources of noise will lead to a better underlying estimate
- In terms of sleep we can think about the human and device as two 'sensors' of sleep
- By combining them we can have a better estimate of the underlying 'true' value

$${\sigma _{n,avg}}^2 = rac{1}{{{M^2}}}\sum\limits_{j = 1}^M {\sum\limits_{j = 1}^M {E\left({{n_j}(p){n_j}(p)}
ight)} } = rac{{{1}}}{{{M^2}}}M{\sigma _n}^2 = rac{{{\sigma _n}^2}}{M}$$




Conklin et al 2024

Dave: Computational approaches to EEG & PSG biomarkers

Machine learning-based analysis of EEG data can be used to identify novel biomarkers predicting developmental

outcomes in DEEs

Methods

- A machine learning model trained and evaluated on EEG segments labeled by 8 epileptologists was used to identify 1 second windows containing IEDs, and IED burden; or percent time containing IEDs, was computed using a 20 second rolling window.
- 197 recordings collected from 7 GoF subjects
- 70 recordings collected from 11 LoF subjects
- Subject age range: 1 day 16 years

Conclusions

- Recurrent epileptiform activity appears to precede developmental delay in SCN2A subjects with GoF variants.
- These findings demonstrate that EEG contains critical biomarkers of DEE- especially for SCN2A GoF subjects, and IED burden could aid in patient selection when therapy carries significant risk.
- Treatments aimed at controlling epileptic activity may be particularly effective in improving developmental outcomes in subjects with GoF mutations.

Why neurophysiology?

- > Time scale of phenomena down to ms
- Cost-effective (e.g., vs MRI, DTI, etc.)
- Scalable (wearables, at home EEG)
- Can be real-time
- Large and growing body of research

Next Steps/Further Considerations:

(1) Plethora of endpoints: Need larger datasets and standardization. <u>Note Society for Psychophysiological Research Guidelines</u>

Picton, T. w., Bentin, S., Berg, P., Donchin, E., Hillyard, S. a., Johnson, R., ... Taylor, M. j. (2000). **Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria.** *Psychophysiology*, 37(2), 127-152. https://doi.org/10.1111/1469-8986.3720127

- (2) Reliability of signal: how to define? What is alignment?
- (3) FDA's 2019 Enrichment for Clinical Trials strategies:
 - (a) Enrichment via decreasing variability
 - (b) Prognostic enrichment
 - (c) Predictive enrichment

PANEL DISCUSSION