Beyond PSG: Sleep Assessment Endpoints, Considerations and Recommendations

A Physician-Engineer's Perspective

Justin Brooks, M.D., Ph.D.

- Associate Professor, Department of Computer Science and Electrical Engineering, UMBC
- Director of Entrepreneurship and Creative Director, University of Maryland, Institute for Health Computing

- D-Prime LLC, Scientific Advisor
- Tanzen Medical Inc, Scientific Advisor
- Clinilabs Inc., Scientific Advisory Board Member

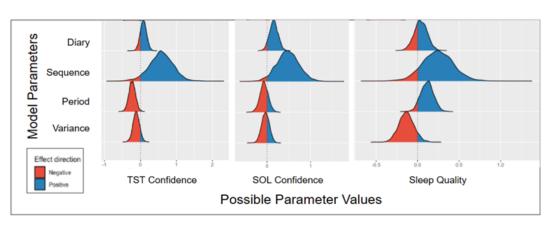
Quantifying Sleep is Challenging

 Polysomnography – Invasive, questionable ecological validity, noisy data

Wearables – mostly wrist worn (why?)
 although some emerging for EEG and leg
 movements – more on this

 Sleep Diaries – one of the gold standards for sleep assessment especially in clinical trials because of its subjective nature, but questionable construct validity - we are looking at an impression of a phenomenon

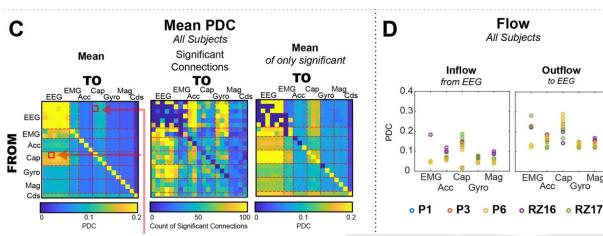
Regardless, we have endpoints to meet


- As currently done, PSG is often prohibitively expensive and not practical for pivotal trials
- Outside the lab, especially in neurodiverse populations, sleep assessment can be enormously challenging
 - Irregular sleeping schedules, nontraditional sleeping arrangements – SMS example
 - Tactile sensitivity/variable ability to report

Consideration 1 – Signal Averaging

- In signal processing, it is mathematically guaranteed that averaging two signals in the time domain that have uncorrelated sources of noise will lead to a better underlying estimate
- In terms of sleep we can think about the human and device as two 'sensors' of sleep
- By combining them we can have a better estimate of the underlying 'true' value

$$\sigma_{n,avg}{}^2 = rac{1}{M^2} \sum_{j=1}^M \sum_{j=1}^M E\left(n_j(p) n_j(p)
ight) = rac{1}{M^2} M \sigma_n{}^2 = rac{\sigma_n{}^2}{M}$$



Conklin et al 2024

Consideration 2: Move beyond convention

- Wearable devices offer the opportunity to gather lots of sensor-based data
- However, they must be used properly and should make sense physiologically
- In our studies, using a leg monitor to assess sleep has been useful in pediatric and Alzheimer's patients where out of sight = out mind
- Beyond this, it makes sense physiologically, as leg movements and not arm movements are more closely tied to sleep mechanisms

Call to Action

- Sleep is presents an enigma to therapeutic developers because there are limited options to get quality, reliable, and valid measures that will be accepted by FDA – especially true in neurodiverse populations
- For now, consider using multiple sources of sleep assessment and combining them in an intelligent way – e.g. combinations of wearables, PSG, data
- Consider the neurophysiology of sleep and take a hard look at the devices and assessment tools you consider using
- As a field, it's time that we look at Drug Development Tool Pathway and others to crystallize an approach to its assessment.

