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The Methodological Issue Being Addressed

Determine predictive capability of audio-video digital measurements collected during a
remote picture description task to predict schizophrenia symptom severity, utilizing all
available longitudinal clinical trial data points.

Results

48 GEE associations survived FDR correction, with most comparisons associated with Negative Symptoms (40%) or Positive Symptoms (29%) (Fig. 5)
Negative symptoms were associated with reduced emotional facial movement, psychomotor slowing, and reductions in expressive vocal prosody measures.
Conversely, positive symptoms were associated with increased emotional facial, head movement, and increased vocal prosody.

Introduction
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Standard regression analysis assumes independence between observations, however longitudinal
datasets violate this basic assumption with repeated within-subject measures.

Negative and Posiive Symptom Scores PANSS Score Patterns associated with greater symptom severity:
+ Generalized estimating equations (GEE) are to designed to leverage longitudinal datasets by

modeling within-subject correlations separately, resulting in parameter estimates that can indicate
the direction and strength of relationships between digital measurement predictors and PANSS
clinical scores based on all available datapoints.
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Here, we leverage over 1,000 longitudinal datapoints to determine relationships with audio-video + Shorter speech pauses during negative picture descriptions consistent with emotional reactivity

digital measures and PANSS factor scores.
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Study Design and Methods
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+ Head movement shows increased emotional reactivity (similar to high Negative-Expressive)
+ Increased acoustic variability during positive pictures is consistent with increased vocal prosody
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Patients: Toble 1, Number of guaiable observations per

week for entry into GEE analysis.

227 clinically stable outpatients with schizophrenia aged 18-65 (154 males, 73 females) participating in open-
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(PANSS) up to 11 times across a 48-week period (Table 1),

Digital Picture Description Task:
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Syndrome Scale Figure 6, GEE Results for other Marder factor c sign has been changed for easier interpretation. Variabilty denotes standard deviation across the video, L2 norm is calculation of distance.

O P s PANSS Score Patterns associated with greater symptom severity:

Stimuli; 1 pleasant image and 1 unpleasant image, interleaved with and 2 neutral pictures (Fig. 2)

Emotional digital measurements were scaled by neutral digital measurements (e.g, Negative / Neutral; and see

Fig. 3) and neutral image digital measurements were entered as raw values

Overall greater head movement and reduced facial movement toward neutral images might
suggest gross motor agitation and flat affect in the absence of an emotionally salient stimulus

We herein refer to digital measures collected under specific task contexts as “digital traits”
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Digital measurements and Analysis:

Festure reduction approach reduced the number of featurss for anslysis by 60%:
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* Removed 44 traits with high redundancy (r>0.8) (84% were movement-related digital traits [Fig. 4)
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a. Test model predictive capability at various timepoints
b. Apply GEE approach to shorter trial with fewer datapoints

* GEE implemented using repolr in R using an auto-regressive correlation structure (ar1) further s sting separable behavioral patterns in auc ,jw digital traits DBM Applications

DBM Clinical
+ 6 PANSS sub-scale scores re-coded into 3 ordered severity groups (low: <Q1, mid: Q1-Q3, high: 2Q3) Determine specificity of negative and positive symptoms Characterization
a. Test links between digital traits and specific items (blunted affect, motor
retardation, grandiosity, unusual thought content )

Inerential models
+ Patient-level outcomes
+ Risk scores.

5 PANSS “Marder” Factors score (with Negative Symptoms split by Expressive and Experiential [Fig. 5])

Current poster

+ Conducted 480 GEE compariaons (80 digital traits x 6 PANSS scores)

+ Applied false discovery rate (FDR) correction set to 5% using q-values
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