Sleep analysis with a novel sleep monitoring device (Somno-Art) as compared to a full PSG solution in apneic patients and healthy controls – an applicable alternative?

Georg Gruber¹, Laurie Thiessè³, Bruno Muller³, Gil Fuchs³, Antoine Viola³, Georg Dorffner¹,², Silvia Parapatics¹, Erna Loretz¹, Sebastian Friedrich¹, Manuel Kemethofer¹

¹: The Siesta Group, Vienna, Austria, ²: Medical University of Vienna, Section for Artificial Intelligence and Decision Support, Vienna, Austria, ³: PPRS, Colmar, France

INTRODUCTION

It was shown that the analysis of heart rate and body movements during sleep using an integrated system (Somno-Art – ‘SA’) provides similar results to the evaluation of sleep architecture performed with the gold standard polysomnography (PSG) in healthy subjects. The aim of the current analysis was to confirm that this approach could discriminate sleep modulations observed in obstructive sleep apnea (OSA) patients as compared to healthy participants likewise.

METHODS

Full PSG and recordings of heart rate and body movements in 77 nights, 40 from healthy participants and 37 from OSA patients were analyzed. PSG data were processed according to the American Academy of Sleep Medicine (AASM) rules using a validated scoring solution (Somnolyzer – ‘SL’). For sleep analysis based on heart rate and body movements the SA algorithm was used. The extracted sleep parameters were compared between healthy controls and OSA patients using unpaired Mann-Whitney U test for each scoring method.

RESULTS

Both approaches characterized the specific sleep modulation due to apnea pathology similarly: total sleep time (SL: p<0.0001, SA: p<0.05), sleep efficiency (SL: p<0.0001, SA: p<0.001) and REM sleep duration (SL: p<0.0001, SA: p<0.0001) decreased significantly in OSA patients as compared to healthy participants. The differences observed for wake after sleep onset (WASO) (SL: p<0.0001; SA: p<0.001), sleep onset latency (SL: p<0.0001; SA: p<0.05) and REM sleep latency (SL: p<0.01; SA: p<0.01) in OSA patients were revealed by both methods likewise.

CONCLUSION

In conclusion, this work provides evidence that Somno-Art, a new sleep monitoring device using integrated analysis of heart rate and body movement, delivers promising results with respect to the calculated sleep parameters. At least in a between-group design the results obtained are similar to those of standard PSG. Thus, Somno-Art is a new sleep scoring solution which proposes an applicable alternative to PSG in OSA patients and healthy controls.