Gene Therapy: Early Clinical Development Challenges

Steven Hersch, MD, PhD
MassGeneral Institute for Neurodegeneration
Massachusetts General Hospital, Harvard Medical School
and
Voyager Therapeutics, Cambridge, MA
What’s different about gene therapy: PK may not apply

- The therapeutic agent is encoded as DNA that is delivered by a viral capsid which must un-coat in the nucleus to release a plasmid that can transcribe a therapeutic RNA.
- The transcribed RNA can code for a protein (or peptide or antibody) and raise its levels or it can cause RNA interference and diminishes levels of the target.
- The administered agent is a vector genome but the ultimate pharmacology is downstream of the molecule that is administered.
- While there can be a dose/response relationship, a conventional PK approach of relating the kinetics of the administered molecule to a therapeutic responses or side effects is not applicable.
Oral administration - capsids don’t survive

Intravenous administration

• Upsides
 • non-invasive
 • could reach the entire CNS

• Downsides
 • doses are very high
 • immune responses are more likely
 • BBB and tropism could hamper reaching the targeted cells
 • systemic exposure could increase the likelihood of off-target effects.

From Maguire et al, 2014
Intrathecal administration

- Upsides
 - Well tolerated
 - Lower doses
 - Reduced systemic exposure

- Downsides
 - Exposure may be best near the site of administration and closer to the surface.

Intraparenchymal administration

- Upsides
 - Doses can be very small
 - Can precisely target specific brain regions
 - Unlikely to elicit an immune response

- Downsides
 - Requires specialized neurosurgery, devices
 - Broad CNS distribution can be difficult

From Hocquemiller et al, 2016
Table 1. Clinical Trials

<table>
<thead>
<tr>
<th>Injection site</th>
<th>Disease</th>
<th>Clinical trial</th>
<th>Inclusion</th>
<th>Serotype</th>
<th>Transgene</th>
<th>Promoter</th>
<th>Dose, min μg</th>
<th>Dose, max μg</th>
<th>Volume, μL</th>
<th>Speed, μL/min</th>
<th>IS</th>
<th>Status</th>
<th>Identifier</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WM (n = 6) Can</td>
<td>Phase I</td>
<td>13</td>
<td>2</td>
<td>ASP</td>
<td>NSE</td>
<td>9 x 10^{11}</td>
<td></td>
<td></td>
<td>900</td>
<td>2</td>
<td>NA</td>
<td>C</td>
<td>NA</td>
<td>15</td>
</tr>
<tr>
<td>WM (n = 12) LINC</td>
<td>Phase I</td>
<td>11</td>
<td>2</td>
<td>CLN2</td>
<td>CAG</td>
<td>1.8 x 10^{12} - 3.2 x 10^{12}</td>
<td>600</td>
<td>2</td>
<td>NA</td>
<td>C</td>
<td>NCT00151216</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WM (n = 12) LINC</td>
<td>Phase II</td>
<td>16</td>
<td>rh10</td>
<td>CLN2</td>
<td>CAG</td>
<td>2.85 x 10^{11} - 9 x 10^{11}</td>
<td>1800</td>
<td>2</td>
<td>NA</td>
<td>O</td>
<td>NCT01414985</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WM (n = 12) MPS II A</td>
<td>Phase II</td>
<td>4</td>
<td>rh10</td>
<td>SGGH</td>
<td>PGK</td>
<td>7.2 x 10^{11}</td>
<td>720</td>
<td>0.5</td>
<td>Y</td>
<td>C</td>
<td>NCT01474343</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WM (n = 12)/ MPS II B</td>
<td>Phase II</td>
<td>4</td>
<td>5</td>
<td>NAGLU</td>
<td>CAG</td>
<td>4 x 10^{12}</td>
<td>950</td>
<td>0.5</td>
<td>Y</td>
<td>O</td>
<td>ISRCTN19853672</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cer (n = 4)</td>
<td>Phase II</td>
<td>5</td>
<td>rh10</td>
<td>ARSA</td>
<td>CAG</td>
<td>1 x 10^{12} - 4 x 10^{12}</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>O</td>
<td>NCT01801709</td>
<td>156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Str (n = 2) Par</td>
<td>Phase II</td>
<td>16</td>
<td>2</td>
<td>GAD</td>
<td>CAG</td>
<td>2 x 10^{12}</td>
<td>70</td>
<td>0.23</td>
<td>NA</td>
<td>C</td>
<td>NCT00643890</td>
<td>163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Put (n = 8) Par</td>
<td>Phase II</td>
<td>10</td>
<td>2</td>
<td>AADC</td>
<td>CMV</td>
<td>9 x 10^{10} - 3 x 10^{11}</td>
<td>200</td>
<td>1</td>
<td>N</td>
<td>C</td>
<td>NCT00229376</td>
<td>164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Put (n = 6)/ SN (n = 4)</td>
<td>Phase II</td>
<td>70</td>
<td>2</td>
<td>NTN (CERE-120)</td>
<td>CAG</td>
<td>1.3 x 10^{11} - 5.4 x 10^{11}</td>
<td>80</td>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>NCT00252850</td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Put (n = 6)/ SN (n = 4)</td>
<td>Phase II</td>
<td>57</td>
<td>2</td>
<td>NTN (CERE-120)</td>
<td>CAG</td>
<td>9.4 x 10^{11} - 2.4 x 10^{12}</td>
<td>360</td>
<td>2/3</td>
<td>NA</td>
<td>O</td>
<td>NCT00985517</td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Str (n = 2) Par</td>
<td>Phase II</td>
<td>24</td>
<td>2</td>
<td>GDNF</td>
<td>CMV</td>
<td>9 x 10^{10} - 3 x 10^{12}</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>O</td>
<td>NCT01621581</td>
<td>167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Str (n = 2) Par</td>
<td>Phase II</td>
<td>10</td>
<td>2</td>
<td>AADC</td>
<td>NA</td>
<td>7.5 x 10^{11} - 1.5 x 10^{12}</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>O</td>
<td>NCT01973543</td>
<td>167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Put (n = 4) Par</td>
<td>Phase II</td>
<td>6</td>
<td>NA</td>
<td>AADC</td>
<td>NA</td>
<td>3 x 10^{11} - 9 x 10^{11}</td>
<td>200/600</td>
<td>3</td>
<td>NA</td>
<td>O</td>
<td>NCT02418598</td>
<td>167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Put (n = 4) Par</td>
<td>Phase II</td>
<td>10</td>
<td>2</td>
<td>AADC</td>
<td>NA</td>
<td>2 x 10^{11}</td>
<td>40/80</td>
<td>2</td>
<td>NA</td>
<td>C</td>
<td>NCT00087789</td>
<td>167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBM (n = 4/6) Alz</td>
<td>Phase II</td>
<td>10</td>
<td>2</td>
<td>NGF (CERE-110)</td>
<td>CAG</td>
<td>1.2 x 10^{10} - 1.2 x 10^{11}</td>
<td>40/80</td>
<td>2</td>
<td>NA</td>
<td>C</td>
<td>NCT00876863</td>
<td>167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA Alz</td>
<td>Phase II</td>
<td>25</td>
<td>2</td>
<td>NGF (CERE-110)</td>
<td>CAG</td>
<td>2 x 10^{11}</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>O</td>
<td>NCT02362438</td>
<td>167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA GAN</td>
<td>Phase I</td>
<td>20</td>
<td>9</td>
<td>Gigaxonin</td>
<td>JeT</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>O</td>
<td>NCT02362438</td>
<td>167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lom CLN6</td>
<td>Phase I</td>
<td>6</td>
<td>9</td>
<td>CLN6</td>
<td>CAG</td>
<td>1.5 x 10^{12}</td>
<td>1000</td>
<td>0</td>
<td>NA</td>
<td>C</td>
<td>NCT02752580</td>
<td>167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PeV SMA I</td>
<td>Phase II</td>
<td>15</td>
<td>9</td>
<td>SMN</td>
<td>CAG</td>
<td>6.7 x 10^{13} - 3.3 x 10^{14}</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>O</td>
<td>NCT02122952</td>
<td>167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PeV MPS II A</td>
<td>Phase II</td>
<td>9</td>
<td>9</td>
<td>SGGH</td>
<td>Uta</td>
<td>5 x 10^{12} - 1 x 10^{13}</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Y</td>
<td>NCT02716246</td>
<td>167</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From Hocquemiller et al, 2016
What’s different about gene therapy: Dosing

• Gene therapy is delivered once
 • Effects are durable (especially in non-dividing cells)
 • Acquired immunity makes redosing problematic, so adjustments aren’t feasible currently
 • May not be able to improve pharmacology or turn off side effects in an individual other than adjusting other treatments.
 • Ethics require starting with a minimally effective dose and in the target population.
 • Early phase studies can be SAD 😞 but not MAD 😞
What’s different about gene therapy: Time-courses

- Onset of pharmacology is delayed as it may take weeks for the virus to uncoat, for the payload to express and reach a plateau, for secondary effects on the target to also plateau.
- Side effects could be an immediate response to the treatment, could emerge in concert with pharmacology, could emerge late if there is an immune response.
- Assessing safety and pharmacology in early phase studies must account for these timings (spacing of enrollment, timing of assessments, duration of follow-up)
- Because the treatment effects are durable, follow-up is measured in years (FDA guidance is 2-5 years for non-integrating virus, 15 for an integrating virus), beginning with the first patient treated.
What’s different about gene therapy: Safety

• On target effects
• Off-target effects
 • Off-location
 • Off-mechanism
• Immune-responses
• Viral shedding
Pre-existing immunity

- Pre-existing humoral or cellular immunity against a capsid could cause an immediate immune response or block treatment effects.
- Anti-capsid neutralizing antibodies (NAbs) are a subset of anti-capsid antibodies that prevent therapeutic transfection.
- Assays essential to screen animals for use in non-clinical studies to insure validity.
- Screening potential trial participants to exclude those with immunity, depending on ROA.
 - Low serum (1:5) titers have been associated with reduced efficacy for systemic gene therapies.
 - IgG in CSF is 12-1200X lower in children, 300X lower in adults so even high serum titers may be OK for IT or IP delivery.
NAb Seroprevalence
- AAV1 NAb in 15-50%
- AAV2 NAb in 30-60%
- AAV7, AAV8, AAV9 NAb in 15-30%
- AAVrh10 in up to 60%
- Nab cross reactivity between capsids is frequent because of high sequence homology.

Anti-AAV Seroprevalence
- AAV1 Abs in 70%
- AAV2 Abs in 70%
- AAV6 Abs in 45%
- AAV9 Abs in 45%
- AAV8 Abs in 38%.
What’s different about gene therapy: Immunology

Calcedo et al 2009

Narkbunnam et al 2011
Mitigation strategies for pre-existing immunity

- Selection of naïve subjects
- Select or engineer viral subtypes with lower sero-prevalence of NAbs
- Plasmapheresis (for titers < 1:100) or immuno-absorption
- Transient immunosuppression (rituximab, cyclosporine A, methotrexate, mycophenolate, bortezomib)
- Isolated perfusion and saline flushing (not for CNS)
- Competition with empty capsids
What’s different about gene therapy: Immunology

Acquired immunity

• Capsid exposure will lead to the development of immunity
• Transgene product immunity could develop depending on the ‘foreignness’
• Immune attack on tissues that can present antigen can cause damage and loss of the gene therapy if its presence is cleared from the targeted tissue.
 • Monitor with assays for humoral and cellular immunity
 • Immune response in toxicology studies may not be predictive of responses in humans
 • Consider immune-suppression depending on the route of administration.
 • Monitor pharmacodynamics to assess durability of expression
Biomarkers – fit for purpose

- **Diagnostic**: Neutralizing antibodies
- **Shedding**: Capsid
- **Target engagement**: RNAs (shRNA, miRNA, mRNA...)
- **Response**: Targeted protein
- **Safety (?)**: Activated T-cells (Elispot), cytokines...
Since gene therapies are durable, typical Phase 1-3 study progression from safety/PK/PD to preliminary efficacy to definitive efficacy does not apply well.

- Every treated patient contributes to the long-term accumulation of safety and efficacy data.
- For neurodegenerative or other progressive diseases, the earliest patients treated can be the most informative about efficacy since follow-up is longest.
- Early inclusion of controls and blinding can maximize the contribution of all the treated patients.
- Adaptive designs may be especially applicable to enable efficient accumulation of safety and efficacy data.
- Early regulatory discussions about how to demonstrate efficacy and access accelerated approval mechanisms.
What’s different about gene therapy: Ethics

• Cannot treat healthy controls during early development.
• The dose should always have the potential to provide benefit.
• Participation in a gene therapy trial could affect participation in other clinical trials.
• Consent process should inform about these issues and also temper expectations at a time when there are such high hopes for gene therapy.
What’s different about gene therapy: Questions?