Success in Rare Disease Drug Development – Friedreich's Ataxia

Barbara Tate, PhD

Chief Scientific Officer

Friedreich's Ataxia Research Alliance (FARA)

Disclosures

Nothing to Disclose

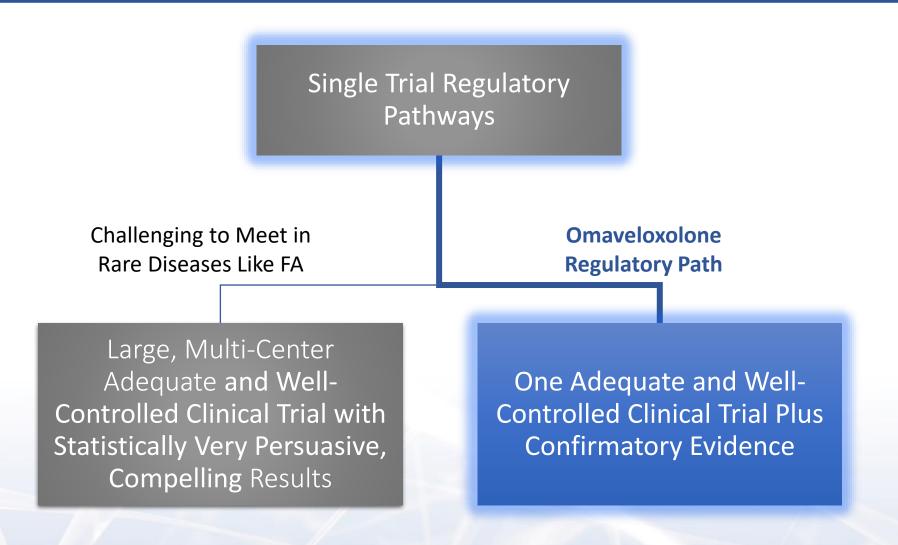
What is Friedreich ataxia?

Rare, Progressive, Neurodegenerative Disease

Rare genetic disease

- 1 in 50,000 people
- About 15,000 people worldwide

GAA repeat expansion

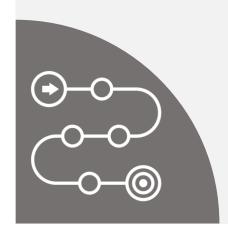

- ~95% mutation homogeneity
- Silences frataxin
- Impairs mitochondrial function

Relentlessly progressive

- Typically diagnosed between 7-15 yrs
- Requires mobility aids in teens / twenties
- Life expectancy early adulthood

Regulatory Guidance for Establishing Substantial Evidence for Efficacy

Regulatory Guidance for Confirmatory Evidence (Sept 2023)


Characteristics of the Single Trial Regulatory **FA Natural History Dataset:** Pathways **Study Duration Contemporary Enrollment** Challenging to Meet in **Omaveloxolone** Rare Diseases Like FA **Regulatory Path** Assessments Largem, Multi-Center One Adequate and Well-**Investigators** Adequate and Well-**Controlled Clinical Trial Plus** Data Reliability and Controlled Clinical Trial with **Confirmatory** Statistically Very Persuasive, **Evidence** Provenance Compelling Results

FA-COMS Study Design

Inclusion

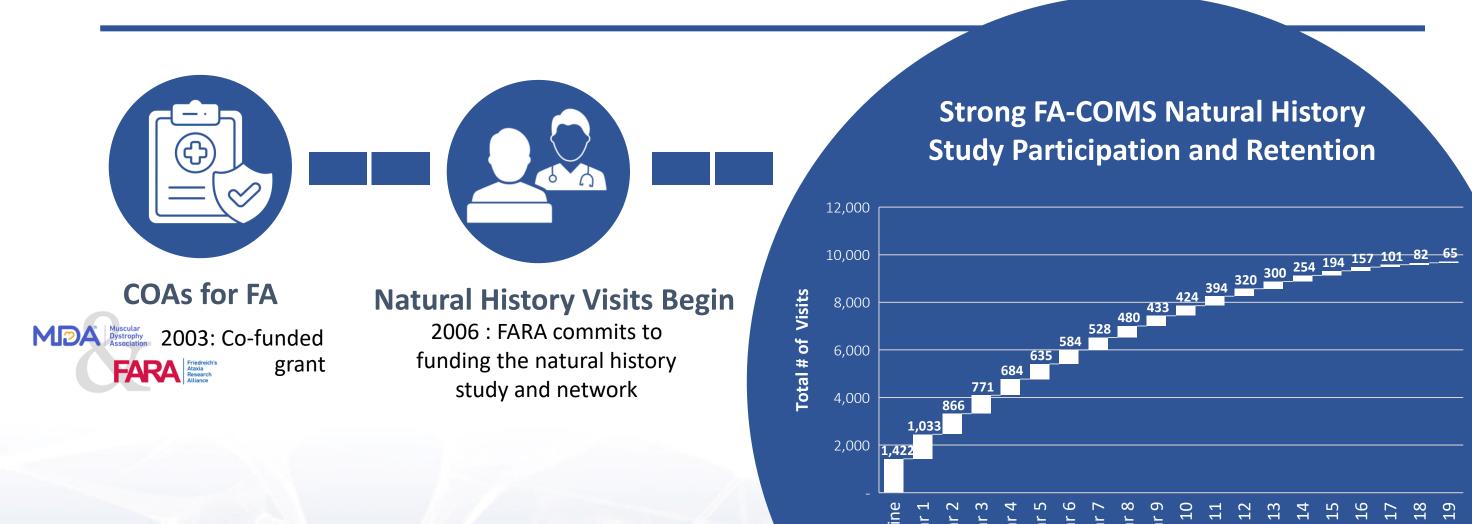
Genetically confirmed FA All ages and stages Representative population

Prospective, Longitudinal

Intentionally forward-looking
Long-term commitment
commensurate with the rate of
disease progression

Annual Visits

Nearly all in-person visits (except some from 2020-2022 due to COVID)



Consistency

Treated it as a non-interventional trial

– same protocol, visit schedules,
sops/standardized procedures, data
collection across all sites

FA Natural History: Initiated in 2003 and still ongoing

Visit Intervals

Consistency and Comparability

Assessments

The natural history study uses the same assessments as clinical trials

Investigators

Same sites/investigators are conducting both the history study and clinical trials

Data Quality, Reliability, and Provenance

C-Path Partnership

Began in 2017

FA-ICD (Integrated Collaborative Database)

Includes FA-COMS & trial data

Available to industry sponsors, FDA, and RDCA-DAP

Data in CDISC STDM standard

PEER-REVIEWED PUBLICATIONS:

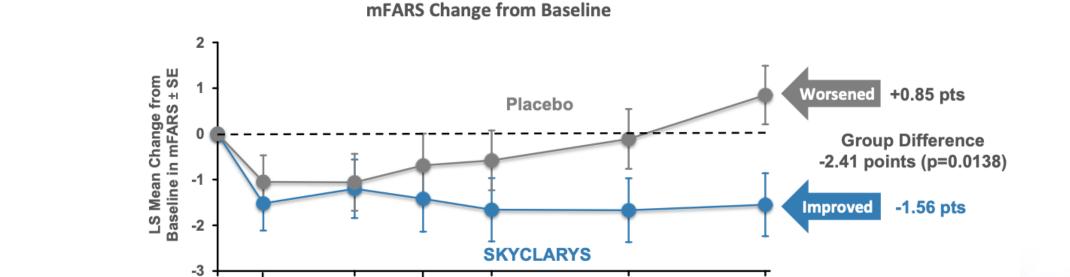
>30 articles published based on the study's data

First NDA in FA: Omaveloxone (now Skyclarys)

MOXIe Part 2 met its primary endpoints

12

42


Number of patients

SKYCLARYS 40

Placebo 42

Treatment with SKYCLARYS™ resulted in statistically significant lower (improved) mFARS scores relative to placebo at Week 48

24 Study Week

36

35

34

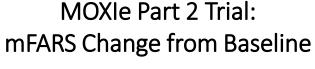
Lynch, et al. Safety and Efficacy of Omaveloxolone in Friedreich Ataxia (MOXIe Study).
Ann Neurol. 2021 Feb.

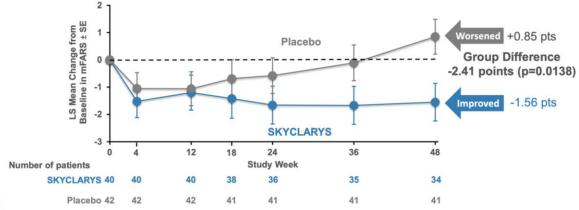
FA Natural History dataset was used to conduct a propensity-matched analysis

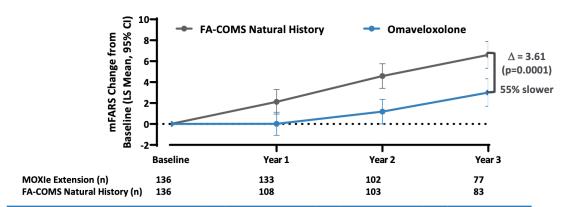
Table 3. Demographics and baseline characteristics used as covariates for propensity score calculation (primary pooled population).

Characteristic	Statistic	Matched FACOMS	MOXIe extension
Age (years)	n	136	136
	Mean (SD)	26.2 (13.7)	26.6 (7.3)
	Min, max	6, 64	16, 41
	p value	_	0.76
Age at FRDA onset	n	136	136
	Mean (SD)	15.2 (10.5)	15.5 (5.3)
	p value	_	0.81
Sex (n [%])	n	136	136
	Female	70 (51.5%)	70 (51.5%)
	Male	66 (48.5%)	66 (48.5%)
	p value	_	1
mFARS	n	136	136
	Mean (SD)	41.0 (16.1)	42.2 (12.6)
	Min, max	5.3, 77.0	8.2, 73.5
	p value	_	0.50
Gait (assessment	n	136	136
#7 in FARS section E [upright stability])	Mean (SD)	2.7 (1.69)	2.8 (1.36)
	p value	_	0.58

p value for the difference between MOXIe extension and matched FACOMS was obtained by two-sample t test for age, age at FRDA onset, mFARS and gait and by chi-square test for sex.
FRDA, Friedreich ataxia; FARS, Friedreich ataxia rating scale; Max, maximum; mFARS, modified Friedreich ataxia rating scale; Min, minimum; SD, standard deviation.


Lynch, D. R., Goldsberry, A., Rummey, C., Farmer, J., Boesch, S., Delatycki, M. B., et al. (2024). Propensity matched comparison of omaveloxolone treatment to Friedreich ataxia natural history data. *Annals of Clinical and Translational Neurology, 11*(1), 4–16.


FA Natural History dataset was used to conduct a propensity-matched analysis


Propensity-Matched Analysis Primary Pooled Population

Patients in the matched FA-COMS group progressed 6.61 mFARS points at Year 3 vs. 3.00 mFARS points for patients treated with omaveloxolone in MOXIe Extension (nominal p=0.0001)

mFARS progression 55% slower in MOXIe Extension patients compared to matched FA-COMS patients at Year 3

mFARS	Baseline	Year 1	Year 2	Year 3
	Mean (SD)	LS Mean (SE)	LS Mean (SE)	LS Mean (SE)
MOXIe Extension	42.2 (12.60)	0.015 (0.56)	1.18 (0.59)	3.00 (0.66)
Matched FA-COMS	41.0 (16.10)	2.11 (0.59)	4.58 (0.59)	6.61 (0.65)
Difference	-	-2.10 (0.81) p=0.0101	-3.41 (0.84) p< 0.0001	-3.61 (0.93) p=0.0001

REATA PHARMACEUTICALS
ANNOUNCES FDA APPROVAL OF
SKYCLARYSTM

(OMAVELOXOLONE),
THE FIRST AND ONLY DRUG
INDICATED FOR PATIENTS WITH
FRIEDREICH'S ATAXIA

Regulatory Pathways

Adequate and Well-Controlled Trial

Other Adequate and Well-Controlled Clinical Trial with Statistically Very Persuasive, Compelling Results

One Adequate and Well-Controlled Clinical Trial Plus Confirmatory Evidence

Characteristic	n (%)			
Sex (N = 2605)				
Male	1306 (50.1%)			
Female	1299 (49.9%)			
Age of Onset (N = 2543)				
Early (0-7 years)	656 (25.8%)			
Typical (8-14 years)	1006 (39. 6%)			
Intermediate (15-24 years)	575 (22.6%)			
Late (> 24 years)	306 (12.0%)			
Age at Baseline (N = 2605)				
< 12 years	296 (11.4%)			
12-17 years	497 (18.1%)			
>= 18 years	1812 (69.6%)			
Age of Active* Participants (N=1494)				
*visit since January 2022				
< 12 years	56 (3.7%)			
12-17 years	167 (11.2%)			
>= 18 years	1271 (85.1%)			

34 Global Sites

Data Quality and Process Considerations

Reliable,
High-Quality
Data

Essential datasets

included:

- Mechanistic data
- Established, trusted Natural History study
- BLINDED open-label extension study

Published data:

- Transparency
 - From Reata & site investigators led to scientific consensus

Communcation & Collaboration

Both Reata and the FDA committed to:

- Multiple meetings
- Working together to apply regulatory flexibility
- Determination of the data sets necessary for valid confirmatory evidence
- Focused on quality data AND meeting regulatory standards