

Exposure to exogenous cannabinoids in prenatal periods and early childhood: Importance of identifying critical windows for brain influences

Aim 1: To quantify urinary concentrations of $\Delta 9$ -THC and its metabolites in banked samples from mother-child pairs.

Hypothesis 1. $\triangle 9$ -THC and its metabolites are detectable in urine samples of pregnant women who did and did not report prenatal marijuana use and their children.

Aim 2: To characterize intra- and inter-individual patterns in urinary concentrations of $\Delta 9$ -THC and its metabolites across pregnancy trimesters and in early childhood.

Hypothesis 2. $\Delta 9$ -THC and its metabolites are most often detected in early-pregnancy urine samples compared with those later in pregnancy. Maternal prenatal concentrations exhibit fair-to-moderate correlations with child urinary levels.

Ritvij Satodiya, MD

Clinical Assistant Professor

Department of Psychiatry

NYU Grossman School of Medicine

Methods

Results

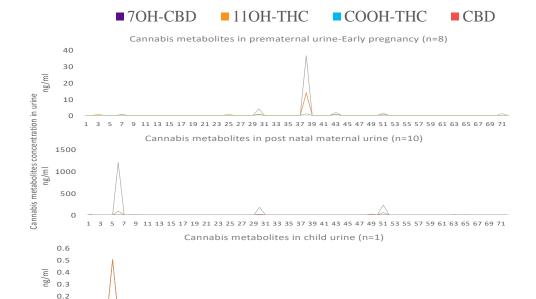
0.1

Cannabis metabolites detection in mother/child pairs (n)

Figure. Study design

<18 wks

>18 wks


birth

12 months

Biomarkers of interest

- 11-nor-9-carboxy-∆9-tetrahydrocannabinol (COOH-THC): Longer t $\frac{1}{2}$ and inactive \rightarrow Sensitive measure for intermittent use
- Δ9-THC, 11-hydroxy-THC: Rapidly metabolize → psychoactive and short t ½ → recent exposure
- Cannabidiol (CBD), Cannabinol: Inactive and short t $\frac{1}{2}$ \rightarrow recent exposure

