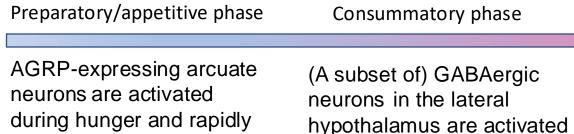
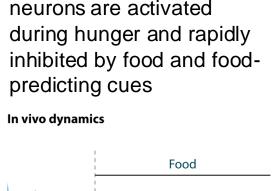
Optimize clinical trial design to study nutraceutical correction of essential fatty acid ratio for weight restoration and maintenance in anorexia nervosa

Hui Yang, MD PhD¹ and Ruslan Medzhitov, PhD²

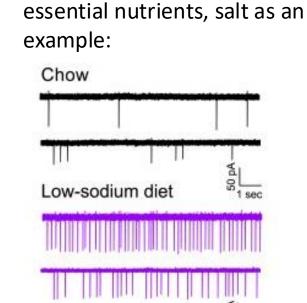
- 1. Yale Psychiatry Residency and Neuroscience Research Training Program
- 2. Yale Department of Immunobiology



ISCTM mentors: Dr. Judith Jaeger and Dr. Ronald Marcus

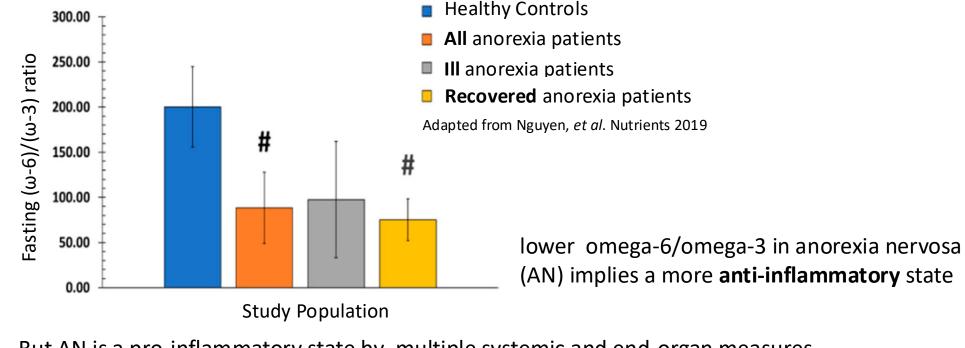

Introduction

How do we know when, what and how much to eat?



during consumption

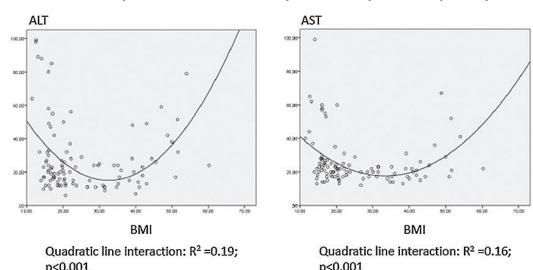
Consummatory cell Time (s) from consumption


Betley et al. Nature 2015 Jennings et al. Cell 2015 Did evolution leave out essential fatty acids? The brain enables adequate

intake of total calories and

Resch et al. Neuron 2017

Why omega-6 and omega-3 matter?



linoleic acid

Omega-6 (ω-6)

Pro-inflammatory

But AN is a pro-inflammatory state by multiple systemic and end-organ measures

How do we reconcile this paradox?

Satiety phase

CGRP-expressing

activated as satiety

develops

parabrachial neurons are

Campos et al. Nature 2018

Omega-3 (ω-3)

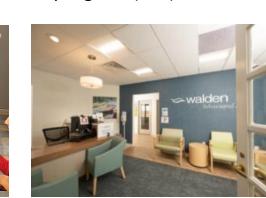
Anti-inflammatory

alpha-linolenic acid

Low omega-6/omega-3 ratio prevents those with genetic predisposition from responding appropriately to hunger cues thus **sustains the AN state**.

Lelli, et al. European Eating Disorders Review 2014

Methods - a pilot RCT


- Based on neural circuitry principles governing feeding behavior
- Fits easily into the typical treatment course for AN

Inpatient (IP) or residential

Johns Hopkins Day Hospital

Partial hospitalization

Walden Middletown, CT

Intensive outpatient

program (IOP)

Eating Recovery Center

Outpatient (OP)

Hypothesis: compared with no nutraceutical intervention, increasing omega-6/omega-3 ratio via nutraceutical supplementation

- > accelerates weight restoration during IP/residential treatment
- increases the likelihood of long-term weight maintenance

Inclusion criteria:

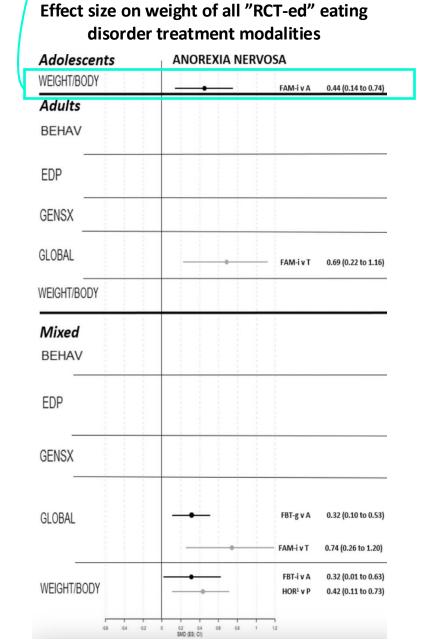
ACUTE at Denver Health

- 1. Age ≥ 14; meet DSM-V diagnostic criteria for AN, admitted to IP or residential treatment centers in Connecticut and other states
- 2. Follow up for at least 6 months after discharge, at their PHP, IOP, and OP visits

Exclusion criteria:

- 1. Metabolic disorders, including but not limited to type 1 diabetes and inborn errors of metabolism
- 2. Inability to complete the Eating Disorder Examination, Questionnaire Version (EDE-Q)8, a validated eating disorder psychopathology assessment)
- 3. Newly been on antipsychotic medication or other medication known to affect weight for < 4 weeks, or plan to start these medications within the first 8 weeks of starting this trial
 - participants can be on a stable dosage of psychotropic medications if they had not consistently gained weight (>3 lb) over the 4 weeks prior to study participation.

Sample size = 60 patients, 30 in each group, determined by 5 factors:


- Pooled effect sizes on weight gain from metaanalysis of psychopharmacological RCTs for AN till the Aug 2022³
- 2. Empirical sample sizes in recent psychopharmacological RCTs for AN in the U.S. – this represents recruitment feasibility³

Pooled effect sizes Sample size range: 16-93 FLU-DEP FLU-EDS -FLU-OCD -FLU-PE FLU-WGH -LIS-BE -LIS-BEw LIS-DEP LIS-EDS LIS-OCD LIS-WGH OLA-ANX -OLA-BMI OLA-DEP -OLA-EDS -OLA-OCD AN BN BED *denotes statistically significant Hedges'g values

Fornaro et al. Journal of

Affective Disorders 2023

- 3. Effect sizes on weight of approved treatment modalities for AN, irrespective of patients' age⁶
 - notice none is pharmacological
 - the most effective treatment for AN: family therapy for adolescents, effect size on weight = 0.44

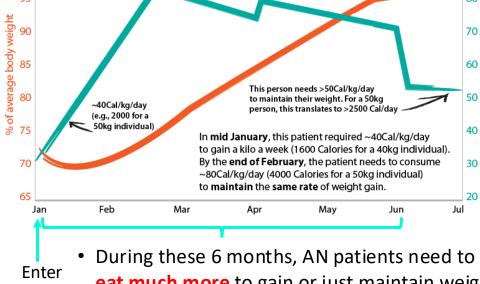
Monteleone et al. Neuroscience & Biobehavioral Review, 2022

- 4. Effect size on weight of the most successful recent drug RCT for AN (olanzapine, by Attia, et al.) = 0.629^2
 - Olanzapine not approved because failed in other trials
- 5. Dropout rate approximated to be 1/3 (33.3%) based on
- most recent pharmacological RCTs for AN had/estimated dropout rates to be 30-38%^{1, 2}
- Non-pharmacological RCTs has lower dropout rates^{3, 6}

Set significance level (alpha) = 0.05, desired statistical power = 0.8, sample size must >= 40 without dropout. Thus, sample size is set to be 60, 30 in each group.

Randomization strategy

Rolling randomization, aim for equal number to receive


- > omega-6 (or omega-6 and omega--3 combo if patient is deficient at admission) that targets published fasting ω -6/ ω -3 ratio in healthy controls, or a placebo
 - Compound name and starting doses for omega-6: gamma LA (linoleic acid) 60 mg daily
 - For omega-3: EPA (eicosapentaenoic acid) 2,120 mg daily and DHA (docosahexaenoic acid) 600 mg daily
- How starting doses are determined:
 - 1. have been used in published clinical trials on children and young adolescent for neuropsychiatric conditions
 - 2. Are at the low end of all published trials using these compounds, all age group included
- Targeted ratio: [200, 250] (the upper bound 250 approximates mean in healthy control + one
- > after discharge from IP or residential, patients to continue in the same randomized group for 6

Primary outcomes:

- > Rate of BMI increase during IP/residential treatment: ΔBMI/days
- \rightarrow % of patients maintaining BMI > 18.5 kg/m² in supplemented vs. placebo groups 6 months after discharge

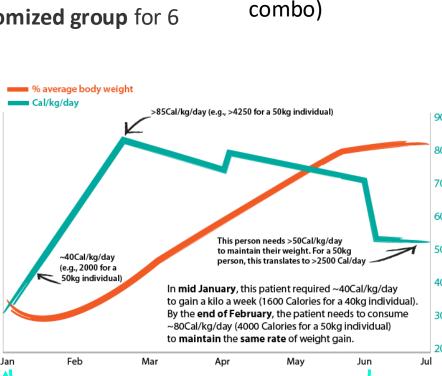
Secondary outcomes:

- > Rate of BMI change (gain, maintenance, loss) when patient is "out and about" (PHP, IOP, and OP)
- > Safety and target engagement Labs
 - Lab draw frequency: every 2 days until targeted omega-6/omega-3 ratio is reached and maintained for 1 week, then space out to weekly draws
 - What to measure:
 - **Hemodynamic stability**: CBC, CMP, Ca, Mg, phosphorous
 - Systemic and end-organ inflammation markers: ESR, highsensitivity CRP, AST, ALT
 - Plasma omega-6, omega-3 and their respective metabolites in the soluble epoxide hydrolase pathway (sEH, a novel anorexia susceptibility gene⁷)
- > Severity of eating disorder psychopathology measured by EDE-Q8

eat much more to gain or just maintain weight, compared to healthy control of the same

4250 kcal per day for a 50 kg AN patient Thus, easy to transiently enter an energy deficit

- Higher ω -6/ ω -3 is expected to prevent AN patients from being stuck in energy deficit


Adapted from Marzola et al., BMC psychiatry 2013

Expected Results and Conclusion

- 1. Compared to no supplementation, omega-6 (or omega-6 and omega-3 combo) supplementation will
 - accelerate BMI increase during IP/residential course
 - o supplemented patients will require shorter hospital stay for the same amount of weight gain
 - result in higher % of patients who maintain BMI > 18.5 kg/m² six months after discharge.
- 2. An RCT design based on neural circuity control of innate behavioral drives may lead to new treatment and recovery maintenance strategies for AN.

Reference and Acknowledgment

- 1. Andries A, Frystyk J, Flyvbjerg A, Støving RK. Dronabinol in severe, enduring anorexia nervosa: a randomized controlled trial. Int J Eat Disord. 2014;47(1):18-23. 2. Attia E, Steinglass JE, Walsh BT, et al. Olanzapine Versus Placebo in Adult Outpatients With Anorexia Nervosa: A Randomized Clinical Trial Am J Psychiatry.
- 2019;176(6):449-456. Fornaro M, Mondin AM, Billeci M, et al. Psychopharmacology of eating disorders: Systematic review and meta-analysis of randomized controlled trials. J Affect
- 4. Lelli L, Castellini G, Gabbani T, Godini L, Rotella F, Ricca V. Associations between liver enzymes, psychopathological and clinical features in eating disorders. Eur Eat
- Disord Rev. 2014;22(6):443-447. Marzola E, Nasser JA, Hashim SA, Shih PA, Kaye WH. Nutritional rehabilitation in anorexia nervosa: review of the literature and implications for treatment. BMC
- Psychiatry. 2013;13:290. Published 2013 Nov 7. Monteleone AM, Pellegrino F, Croatto G, et al. Treatment of eating disorders: A systematic meta-review of meta-analyses and network meta-analyses. Neurosci
- 7. Nguyen N, Dow M, Woodside B, German JB, Quehenberger O, Shih PB. Food-Intake Normalization of Dysregulated Fatty Acids in Women with Anorexia Nervosa. Nutrients. 2019;11(9):2208. Published 2019 Sep 13.
- 8. Steinglass JE, Fei W, Foerde K, et al. Change in food choice during acute treatment and the effect on longer-term outcome in patients with anorexia nervosa. *Psychol Med*. 2024;54(6):1133-1141.

 ω -6 (or ω -6

and ω -3

placebo