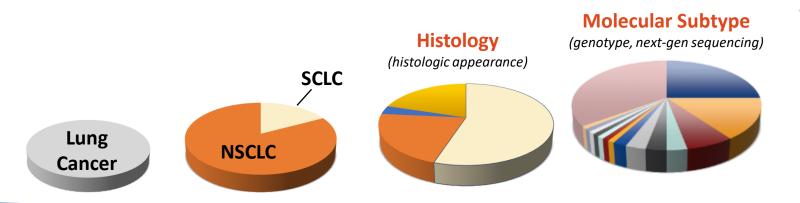
Precision Clinical Trials Lessons from Oncology

Stephen Liu, MD

Director of Thoracic Oncology

Head of Developmental Therapeutics

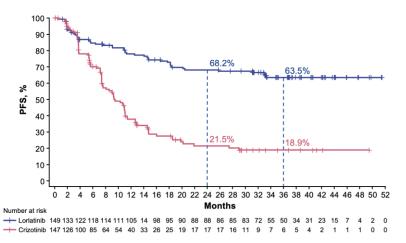

Georgetown University

Disclosures

- Advisory Board / Consultant:
 - AstraZeneca, Bristol-Myers Squibb, Catalyst, Daiichi Sankyo, Eisai, Elevation Oncology, Genentech/Roche, Gilead, Guardant Health, Janssen, Jazz Pharmaceuticals, Merck/MSD, Merus, Novartis, Regeneron, Sanofi, Takeda, Turning Point Therapeutics
- Research grant (to institution):
 Alkermes, Elevation Oncology, Genentech, Gilead, Merck, Merus, Nuvalent, RAPT,
 Turning Point Therapeutics
- Data Safety Monitoring Board Candel Therapeutics

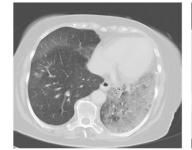
Progress in Lung Cancer

- Lung cancer is the leading cause of cancer death for men and women
 - Few advances until the past two decades; remarkable progress recently


 Identify and leverage differences present in cancers to personalize care

Progress in Lung Cancer

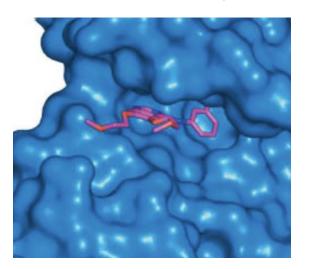
- Improvement in outcomes results from adopting precision therapy
 - Do not ignore the differences between patients' diseases
 - Embrace those differences
- Chromosomal rearrangements in ALK seen in ~5% of NSCLC
 - Oral kinase inhibitors effective
 - Immunotherapy not effective



Lesson: Understand the Target Population

- Epidermal Growth Factor Receptor (EGFR) commonly expressed protein
- EGFR kinase inhibitors studied in NSCLC (high protein expression)
 - Most patients had no response and their cancer worsened quickly
 - ~10% had a dramatic response

	Table 3. Respon	se to Erlotinib			
	Investigator Best F (WHO criter		Sponsor Best Response (RECIST criteria)		
Response	No. of Patients	%	No. of Patients	%	
CR	2	3.5	2	3.5	
PR	5	8.8	5	8.8	
Stable disease	20	35.1	22	38.6	
Progressive disease	28	49.1	28	49.1	
Not assessable	2	3.5	_	_	
Overall response rate, CR + PR	7	12.3	7	12.3	
95% CI, %	5.1 to 23.7		5.1 to 23.7		


Baseline

3 months

2 years

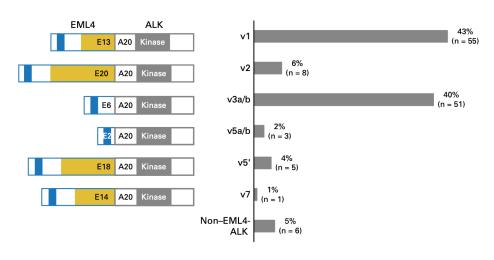
Lesson: Understand the Target Population

- Investigation at Mass General of 275 patients treated with gefitinib (first-generation EGFR inhibitor) for NSCLC
 - 25 had a major response; 9 of those had tumor tissue for analysis
 - 8 had a specific genetic mutation (EGFR kinase domain mutation)

Gene	Method	Analyte	Variant Interpretation	Protein Alteration	Exon	DNA Alteration	Variant Frequency %
EGFR	Seq	DNA-Tumor	Pathogenic Variant	p.E746 _A750del	19	c.2236 _2250del15	31
TP53	Seq	DNA-Tumor	Pathogenic Variant	p.P60fs	4	c.177delT	48

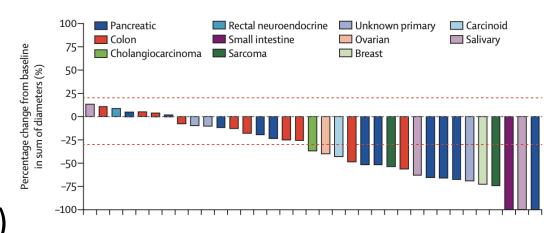
- Invest in biomarker development
- Major advances may stem from study of small groups
- Be willing to adapt your biomarker

Lesson: Details matter

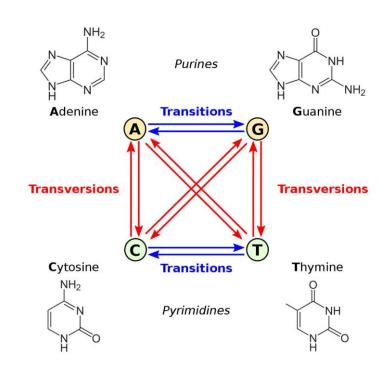

 Different EGFR mutations and comutations impact outcomes

Gene			Variant Interpretation	Protein Alteration	Exon	DNA Alteration	Variant Frequency %
EGFR	Seq	DNA-Tumor	Pathogenic Variant	p.E746 _A750del	19	c.2236 _2250del15	31
TP53	Seq	DNA-Tumor	Pathogenic Variant	p.P60fs	4	c.177delT	48

Gene	Method	Analyte	Variant Interpretation	Protein Alteration	Exon	DNA Alteration	Variant Frequency %
EGFR	Seq	DNA-Tumor	Pathogenic Variant	p.E746 _A750del	19	c.2235 _2249del15	21
MYC	CNA-Seq	DNA-Tumor	Amplified	-	-	-	-
PIK3CA	Seq	DNA-Tumor	Likely Pathogenic Variant	p.E970K	20	c.2908G>A	18
PTEN	Seq	DNA-Tumor	Pathogenic Variant	c.254-19 _275del41	5	c.254-19 _275del41	38
RB1	Seq	DNA-Tumor	Pathogenic Variant	c.264+1G>T	2	c.264+1G>T	61
TP53	Seq	DNA-Tumor	Pathogenic Variant	p.L43*	4	c.128T>A	72


Gene	Method	Analyte	Variant Interpretation	Protein Alteration	Exon	DNA Alteration	Variant Frequency %
ARID1A	Seq	DNA-Tumor	Pathogenic Variant	p.R1335*	16	c.4003C>T	16
EGFR	Seq	DNA-Tumor	Pathogenic Variant	p.S768 _D770dup	20	c.2303 _2311dup9	40

- ALK inhibitors effective in lung cancer with an EML4-ALK fusion
 - Fusion variants (breakpoints) have very different prognoses


Lesson: Genotype can override phenotype

- Selpercatinib selective RET inhibitor
 - Approved for medullary thyroid cancer and for RET fusion-positive NSCLC and thyroid cancer
 - September 21, 2022 approved for any cancer with a RET fusion
- Other pan-tumor indications
 - Entrectinib (NTRK fusion)
 - Larotrectinib (NTRK fusion)
 - Pembrolizumab (MSI-high)
 - Pembrolizumab (TMB-high)
 - Dabrafenib + trametinib (BRAF V600E)

Lesson: Genotype may not override phenotype

- KRAS mutations among the most common oncogenic alterations
 - KRAS G12C mutations are now actionable
 - Sotorasib in KRAS G12C NSCLC
 - RR 37.1%, FDA approved
 - Sotorasib in KRAS G12C colorectal cancer
 - RR 9.7%
- Context is important, never assume
- Challenges with rare genomic subsets
 - When are large studies needed?

Lesson: Innovative Trial Design

- Basket trials one drug/gene, many tumor types (analyzed separately)
 - NTRK inhibitor for NTRK fusion cancers
 - Baskets / cohorts for NSCLC, GI tumors, sarcomas, first-line, salvage
- Umbrella trial one tumor type, many drugs/genes
 - BATTLE trial (2L NSCLC treatment based on profile)
 - I-SPY trial (neoadjuvant treatment for breast cancer)
- Octopus trial one main agent with multiple combination "arms"
 - CodeBreaK 100 (sotorasib + other agents in KRAS G12C cancers)

Precision Clinical Trials

- Empiric "one-size-fits-all" trials
 - Easy to design and complete
 - Lead to broad indications
 - Over time, offer incremental benefit
- Precision biomarker-driven trials
 - Require thoughtful design and implementation
 - Rely on biomarker discovery and development
 - Lead to focused, smaller indications
 - Potential for transformative benefit

Precision Clinical Trials: Successes and Pitfalls

- Lessons Learned
 - Do not ignore the differences embrace them
 - When a treatment works well for a small portion of patients, invest in biomarkers to help define that patient population
 - Be willing to adapt based on emerging understanding, technology
 - Details always matter (even if we do not understand how they matter)
 - Genotype may or may not override phenotype
 - Trial design is critical to efficient drug development
 - Keep an open mind, borrow from other disciplines